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Abstract—Smart contracts facilitate the execution of pro-
grammable code on a blockchain. The cost for executing smart
contract code is metered using gas – the exact amount of which is
based on the computational complexity of the underlying smart
contract. Hence, it is imperative to optimize smart contract code
to reduce gas consumption and, in some instances, to even avoid
malicious attacks. In this paper, we propose an approach to
optimize the gas consumption of smart contracts, specifically loop
control structures. We present a prototype implementation of our
approach using off-the-shelf tools for Solidity smart contracts. We
experimentally evaluate our technique using 72 Solidity smart
contracts. Our evaluation demonstrates the average gas cost
savings per transaction to be around 23, 943 gas units, or an
equivalent 21% decrease in gas costs. Although the approach
causes a slight increase in deployment costs due to the additional
internal functions, this is only 16, 710 gas units on the average,
or a 5% of the total deployment cost. As this overhead remains
quite reasonable when compared to the gas cost savings for
each transaction, it also confirms the efficacy, practicality and
effectiveness of the proposed methodology.

Index Terms—Smart contracts, Gas, Verification, Synthesis

I. INTRODUCTION

Blockchain offers an innovative approach that allows to
establish trust in an open environment without the need of
a centralized authority to do so. This is because no entity
can delete or modify blockchain transactions once they have
been recorded. Many consider blockchain as a breakthrough
application of cryptography and distributed systems, with use
cases ranging from globally deployed cryptocurrencies [1],
[2], to Central Bank Digital Currencies [3], supply chains [4],
Internet-of-Things networks [5] and insurance [6].

Popular blockchains, most prominently Ethereum [7], allow
the execution of application programs, called smart contracts,
that are stored on the blockchain. Smart contracts offer the au-
tonomy for arbitrarily-complex transactions between untrusted
parties in a secure manner without going through a middleman
(e.g., commercial financial institutions) using cryptocurrencies.
They are already powering a sizable economy: applications
include decentralized finance [8] and auctions [9]. A smart
contract manages a permanent state stored on the blockchain.
It is constituted of a set of functions that manipulate the state.
Functions can be called either directly by users or indirectly
by other smart contracts, through transactions. They allow

to perform arbitrarily-complex operations using cryptoassets
stored on the blockchain. Solidity [10] is the most popular
Turing-complete high-level programming language for smart
contracts, which is designed to target the Ethereum Virtual
Machine (EVM) [7]. A smart contract written in Solidity
resembles an object in a standard object-oriented programming
language, e.g., Java.

An important aspect in smart contract operation is this
of gas, that is, their underlying computational resource that
compensates system participants for executing transactions.
A transaction can be terminated if the amount of gas it has
consumed exceeds a certain limit fixed by the author of the
transaction. The amount of gas for a particular transaction
invoking a smart contract function depends on the number
of operations in the function and their types. For instance,
read and write operations on storage variables consumes much
greater amounts of gas than read and write operations for local
variables. In a nutshell, the total transaction fee is computed
by multiplying the total amount gas by the gas price1. Thus,
the more computation a smart contract function performs, the
more gas and fees it needs to pay for its execution. Therefore,
executing smart contracts with functions containing inefficient
or unnecessary operations can become a costly expedition.
Furthermore, these contracts can be targeted by malicious
attackers causing financial losses by exploiting gas related
vulnerabilities [11], [12]. A recent study on smart contracts on
the Ethereum blockchain reported gas related vulnerabilities in
contracts worth more than $2 billion USD [13].

Optimizing smart contracts may reduce gas consumption
and therefore the associated cost of executing transactions. It
also has the potential to mitigate against malicious exploita-
tion of smart contracts. A common optimization goal for a
smart contract aims to reduce the number of operations in
general, and in particular, those accessing storage variables
while ensuring functional correctness of the underlying code.
More specifically, loops can potentially cause an exponential
increase in gas consumption that relates to the number of
iterations a loop(s) is executed. Evidently, with an increasing
use of smart contracts to perform complex operations, the
usage of loops in those programs is likely to increase as
well. Therefore, it remains objectively important to develop

1Gas price varies and is set by the author of a transaction depending on
the current ongoing gas price being used in the blockchain network.978-1-6654-3924-4/21/$31.00 ©2021 IEEE



techniques to optimize loop structures in smart contracts.
In this paper, we propose an approach to optimize loop

structures in smart contracts. Our optimization consists of a
synthesis based technique for generating summaries of loops
using predefined templates such as the standard map-reduce
operators. Recent work showed that most smart contracts loops
can be summarized using map-reduce type operators [14],
[15]. In this paper, we apply syntactic transformations on the
generated summaries to use local variable instead of repeatedly
accessing storage variables. Doing syntactic transformations
on summaries is much simpler than doing them on the original
loops since summaries follow predefined templates and are
more compact. As an added advantage, we also verify the
equivalence between the generated contract with the trans-
formed summaries of loops and the original one. To prove
the equivalence, we adopt the notion of behavioral refinement
between smart contracts from [16] which relates the input-
output behavior of contracts’ transactions, i.e., transactions
parameters and effects on storage variables, ignoring internal
details such as local operations and control flow.

We implement our approach by leveraging the synthesizer
from [14] to generate summaries of loops. We then extend
the synthesizer to perform the syntactic transformations on
the generated summaries. Finally, we verify the equivalence
between contracts using solc-verify [17]. All in all,
the proposed implementation correctly optimizes the code of
nontrivial smart contracts, and integrates off-the-shelf tools to
optimize loop structures in Solidity smart contracts. In detail,
we empirically validate our approach on 72 Solidity smart
contracts. The experiments demonstrate a 21% decrease in gas
costs by applying the proposed optimization approach.

In summary, this paper makes the following contributions:
• We develop an approach to optimize smart contracts gas

consumption that combines loop summaries synthesis,
syntactic transformations, and equivalence proofs;

• We build an implementation of our approach for So-
lidity smart contracts that integrates off-the-shelf tools:
SOLIS [14] and solc-verify [17]; and,

• We evaluate our approach, optimizing loop structures for
72 Solidity smart contracts which results in 21% decrease
in gas costs.

The rest of the paper is organized as follows. In Section II,
we give a motivational overview of our methodology. Sec-
tion III presents the prior art. In Section IV, we detail the
technical elements of our methodology. Section V presents
the implementation of our approach for Solidity smart con-
tracts while Section VI contains the empirical results. Finally,
Section VII concludes this work.

II. PROBLEM & METHOD OVERVIEW

Here we give an overview of the gas optimization problem
investigated in this paper. First, we discuss three refactoring
patterns that can be applied to loops to optimize their gas con-
sumption. Then, we illustrate with an example our approach
for optimizing smart contracts using the above refactoring

patterns while ensuring that the resulting optimized smart
contracts are behaviorally equivalent to the original contracts.

Below we list the three loops refactoring patterns which we
target in our work:

for (uint i=0;i<length;i++) {
total += tokens[i];

}

Fig. 1. Repeated storage calls

uint local = total;
for (uint i=0;i<length;i++) {

local += tokens[i];
}
total = local;

Fig. 2. Refactored loop

uint x = 1;
for (uint i=0;i<length;i++) {

if(x + i > 0) {
total += tokens[i];

}
}

Fig. 3. Constant comparison

uint x = 1;
for (uint i=0;i<length;i++) {

total += tokens[i];
}

Fig. 4. Refactored loop

for (uint i=0;i<length;i++) {
tokens[i] += limit × price;

}

Fig. 5. Repeated computations

uint local = limit × price;
for (uint i=0;i<length;i++) {
tokens[i] += local;

}

Fig. 6. Refactored loop

1) Loops with repeated storage calls: A loop can make
many calls to the storage based on the number of steps
it is supposed to make. This is because read/write calls
to the storage variables requires high amounts of gas.
For instance, in each iteration of the loop in Figure 1,
we require a storage read for loading total value and a
storage write for updating total value after the addition
operation. A possible optimization, shown in Figure 2,
consists of using a local variable to store the total value,
and all updates are made to the local variable before re-
assigning it to total at the end of the loop. Thus, we
reduced the repeated storage calls to just two storage
calls.

2) Loops with a constant comparison: This pattern refers
to the case where there is a comparison operation within
a loop that always evaluate to a constant value. For
instance, Figure 3 shows an if condition that always
evaluate to True. An optimized version consists of
eliminating the if condition is shown in Figure 4.

3) Loops with repeated computations: Similar to the first
pattern 1, but this pattern involves computation that is re-
peated in each iteration of the loop and could be replaced
by a constant value computed once before entering the
loop. For instance, the computation limit ∗ price in
Figure 5 can be done outside the loop and assigned to
a local variable to optimize the gas usage as shown in
Figure 6.

A. A Motivating Example

We illustrate our approach using the smart contract in
Figure 7. The contract code consists of a single function



contract C {
mapping(address => bool) whitelist;
address[] beneficiaries;
bool active;

function foo() public {
for (uint i=0; i<beneficiaries.length; i++) {

whitelist[beneficiaries[i]] = active;
}

}
}

Fig. 7. Unoptimized contract

with a gas-inefficient loop because of unnecessary repeated
storage calls to read the value of active. We synthesize
a loop summary function to replace the gas-inefficient loop
such that the function parameters are the loops parameters and
the assigned value as demonstrated by the function foo_for
in Figure 8. Following, we apply syntactic transformations
that add local assignments operations to copy the values
from storage variables (e.g.,, active) to local variables (e.g.,
rvariable) that are passed in the invocation to the loop
summary function foo_for as shown in Figure 8. Thus,
the intermediary function foo_for does all the computa-
tions (previously done on storage variable) on the newly
passed local variable. Our approach follows a template-based
synthesis one which allows to optimize the loop body by
using the more compact template summary. Thus, it facilitates
applying the syntactic transformations by restricting them to
local assignments operations to copy the input and output
parameters of the loop summary function.

In the final step of our technique, we check whether the
optimized contract is behaviorally equivalent to the original
contract. More specifically, our behavioral (i.e., functional)
equivalence consists of a relation between the states of the
two contracts supporting a proof that the optimized contract
mimics every method invocation of the original contract. Since
in our optimization we do not alter the state representation of
the original contract than the relation supporting the proof
of equivalence is always a conjunction of equalities between
respective state variables as shown below:

Equiv
def
= C0.beneficiaries = C.beneficiaries ∧ (1)

C0.active = C.active ∧ C0.whitelist = C.whitelist

To prove the equivalence, we construct a product contract
in Figure 9 from the two contracts, where for each two
public methods (e.g., foo) of the two contracts we create
a corresponding public method in the product contract. Then,
an equivalence relation proof is valid iff it is a valid invariant
of the product contract. Here, we assume that contracts are
deterministic – a valid assumption by-definition for contem-
porary blockchain smart contracts. In Figure 9, we define the
synchronized product of the two contracts in Figures 7 and 8
using the inheritance mechanism of Solidity.

III. PRIOR ART

There are many works on the analysis and functional verifi-
cation of smart contracts, e.g., systems for detecting vulnera-

contract C0 {
mapping(address => bool) whitelist;
address[] beneficiaries;
bool active;

function foo() public {
bool rvariable = active;
uint initial = 0;
uint loopcondition = beneficiaries.length;
foo_for(rvariable, initial, loopcondition);

}

function foo_for(bool rvariable, uint initial,
uint loopcondition) internal {
for (uint i=initial; i<loopcondition; i++) {

whitelist[beneficiaries[i]] = rvariable;
}

}
}

Fig. 8. Optimized contract

invariant C0.beneficiaries == C.beneficiaries
invariant C0.active == C.active
invariant C0.whitelist == C.whitelist
contract P is C, C0 {

constructor() public {
C();
C0();

}

function checkFoo() public {
C.foo();
C0.foo();

}
}

Fig. 9. Product contract

bilities in smart contracts based on static analysis and symbolic
execution engines [13], [18]–[20], and systems for proving full
functional correctness of smart contracts using techniques such
as interactive theorem provers, SMT solvers, and predicate
abstraction [21]–[24]. Recently, the high volatility in gas prices
has pushed for gas optimization techniques [13], [25]–[29].
Along those lines, this paper focuses on developing a novel gas
optimization approach for smart contracts written in a high-
level programming language. For our methodology, we use
existing techniques and tools for smart contracts synthesis and
verification [14], [16], [17].

In the remaining we review techniques that optimize smart
contracts gas consumption.

There are many tools for detecting gas-inefficient patterns
and gas related vulnerabilities in smart contracts [13], [25]–
[34]. In [13], the authors develop a tool that detects gas-
related vulnerabilities. However, they do not propose any au-
tomated optimization to eliminate these vulnerabilities. Cheng
et al.’s [25] identify multiple patterns such as dead code,
opaque predicates, expensive operations in loops that can be
optimized. They develop a tool called GASPER to apply the
optimization to smart contracts at the bytecode level. They
also extend their initial work to create GasReducer [35] that
uses parallelized symbolic execution and handles additional
optimization patterns. Albert et al. [26] develop a tool called
GASOL to analyze gas consumption and to optimize smart con-
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tract code by calculating an upper bound of gas consumption.
Their optimizations are specific to storage-related operations.
In [29], [34], the authors target Solidity smart contracts and
propose static analysis techniques based on syntactic transfor-
mations that follow a predefined set of optimization patterns
similar to the ones we discussed in Section II. For instance,
in [29] a Python based optimizer is developed to detect the
predefined set of gas-inefficient patterns and replace them with
optimized code. Both [29], [34] do not formally prove the
equivalence between the optimized contract and the original
contract. In contrast, our approach includes an equivalence
checking step to ensure the equivalence between the two
contracts using simulation relation based proof. Furthermore,
note that techniques based on static analysis are less precise
(i.e., in terms of the number of false positives) than our
technique. This is because they use syntactic approximation of
the variables accessed and bounded loop unrolling. Thus, in a
bounded loop unrolling it might seem that a block of code is
unreachable while this might not be valid in general. Recent
programming languages like Scilla [36] and Michelson [37]
disallow while-loop structures which facilitates the analysis
of gas consumption.

IV. PROPOSED METHODOLOGY

We now describe our methodology for gas optimization.
Given a smart contract, our approach generates an opti-
mized contract that has the same state representations (storage
variables remain unchanged) as the original contract and is
behaviorally equivalent to the original contract as well. In
Figure 10, we show the three main steps that constitute our
methodology for gas optimization. The first step constitutes of
synthesizing a compact summary for each loop using an ap-
proximate synthesis technique based on predefined templates
like map-reduce operators. Our loop summarization allows
one to optimize code and it also reduces gas consumption.
For instance, it allows to remove unnecessary conditionals
according to the second pattern discussed in Section II. Then,
the second step constitutes of syntactic transformations where

we remove unnecessary accesses to storage variables, which
allow to reduce the gas consumption further. Our final step
consists of checking the behavioral equivalence between the
input contract and the optimized contract generated using the
previous two steps. In the rest of the section, we describe the
steps of our methodology in more details.

A. Loop Summary Synthesis

To synthesize a concise summary of a loop structure we
adopt a template-based synthesis technique. In particular, we
use the set of templates proposed by [14] which consists of
map-reduce operators such as Map, Fold, and Zip. This
is because it was shown in [14] that most smart contracts
loops can be summarized using the above set of templates.
For instance, the loop in the contract shown in Figure 7
can be summarized by a map operator function that assigns
a constant value (active) to a range of elements within
a Solidity map (whitelist). The function foo_for in
Figure 8 corresponds to the synthesized map operator function
parameterized by the constant value and the range of elements.
Using our template-based synthesis technique allows one to
derive a loop summary where dead code (i.e., code that is never
executed) within a loop body and unnecessary conditionals are
eliminated. Thus, we are able to carry gas optimization during
the synthesis step of our methodology.

B. Syntactic Transformations

After the previous semantics transformations based on
synthesis, in this step we use syntactic transformations to
apply further optimizations. In particular, our syntactic trans-
formations are guided by the goal to eliminate the first and
third gas-inefficient patterns that we discussed in Section II.
These patterns mainly target the reduction of gas consumption
associated with the usage of storage variables. Having a
concise loop summary generated in the previous step will
facilitate applying the syntactic transformations. Our syntactic
transformations consist of mainly eliminating repetitive calls
to a contract storage variables by storing copies of storage
variables in local variables. Following, the values stored in
local variables are moved back to the corresponding storage
variables. For instance, in Figure 8 the value of the storage
variable active is stored in a local variable rvariable
that is passed as parameter to the map operator function
foo_for. Note that if we consider the number of iterations
a loop will go through, eliminating repetitive calls to storage
variables allows to save substantial amounts of gas cost that
can reach more than 20,000 gas units.

Figure 8 shows the optimized contract code after applying
the above two steps of our gas optimization methodology.
Next, we describe how to check whether this optimized
contract is behaviorally equivalent to the original contract.

C. Equivalence Checking

We reduce the problem of verifying that the optimized
contract is behaviorally equivalent to the original contract to
proving bisimulation relation between the two contracts. The
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bisimulation relation consists of the conjunction of equality
between corresponding state variables of the two contracts.
This is because in the previous optimization steps we do
not alter the state variables of contracts. Then, we prove
the validity of the bisimulation relation between the two
contracts by checking that it is an inductive invariant for
a composition of contracts, which is formalized using the
standard synchronized product construction. For instance, Fig-
ure 9 contains the product contract P of the two contracts C
and C0 discussed in Section II, which is defined using the
inheritance mechanism of Solidity. Since the public method
foo is defined in both contracts, the method checkFoo
represents synchronous invocations of foo in C and C0. With
this verification step, we will be able to certify the behavioral
integrity of the accomplished optimizations in the previous
two steps.

V. IMPLEMENTATION

In this section we describe an implementation of our pro-
posed methodology for Solidity smart contracts. Figure 11
shows the high-level architecture of our implementation which
consists of four main components: functions parser, a loop
summary synthesizer, a syntactic modifier, and an equivalence
checker. As input, our implementation requires a Solidity
smart contract.

Given an input contract, the functions parser constructs an
intermediary contract for each function of the given contract
that contains a loop. This is because the tool, SOLIS, used by
our loop summary synthesizer accepts only Solidity contracts
with a single function. In turn, for each intermediary contract,
the synthesizer generates a loop summary using a predefined
set of templates. Afterwards, the syntactic modifier transforms
unnecessary storage accesses using intermediary local vari-
ables to store the values of storage variables. An optimized
contract is constructed by combining the optimized interme-
diary contracts. Finally, the equivalence checker validates that
the optimized contract is behaviorally equivalent to the input
contract.

A. Functions Parser

Our functions parses a set of intermediary contracts from
the input contract. Each intermediary contract is associated

contract C {
uint initial;
uint loopcondition;
uint gvariable;
uint[] somearray;
uint somecondition;

function foo() public {

for (uint i= initial ; i< loopcondition ; i++) {

uint local = 100;

gvariable += somearray[i] + local ;

}
}

}

Fig. 12. Loop locations to be optimized

with one function from the input contract. We use Solidity
Parser Python library [38] to extract the abstract syntax tree
(AST) of the input contract. We then use the AST to identify
functions with loops and generate an intermediary contract for
each function.

B. Loop Summary Synthesizer

To synthesize a loop summary for an intermediary contract,
we use SOLIS [14], an automated tool for synthesizing loop
summaries for Solidity contracts. SOLIS generates a loop
summary by enumerating candidate summaries in a fixed set
of templates defined as in a domain specific language called
CONSUL. Possible operations in CONSUL are Map, Fold,
and Zip functions. SOLIS uses bounded model checking to
ensure that a candidate loop summary is valid by checking
whether it is equivalent to the initial loop. We extend CONSUL
along three principle axes. First, we extend it to support
arithmetic operations other than addition. Second, we add
more Solidity language features such as msg.sender. Third,
we extend it to handle functions and loops with complicated
structures, e.g., nested loops and loops inside if conditions.

C. Syntactic Modifier

For the syntactic transformations, we identify specific lo-
cations in the loop structure where we store the values of
storage variables in local variables. At the end of the loop, the
updated values of the local variables are moved back to the
storage variables. For instance, in Figure 12, we highlight the
particular locations where the above transformations can be ap-
plied: initialization, loop condition, variables accessed within
the loop, and variables declared in the loop. We extend SOLIS
to apply the syntactic transformations as postprocessing step
for the intermediary contracts that contain synthesized loops
summaries. Once the final Solidity optimized intermediary
contracts are generated, we merge them to devise the final
optimized contract.

D. Equivalence Checker

SOLIS automatically checks for equivalence between an
intermediary contract and the generated intermediary contract
before the syntactic transformations. However, it remains to
check for equivalence between an intermediary contract and



the generated intermediary contract after syntactic transforma-
tions, and the input contract and the final optimized contract.
Note that checking the equivalence between the input contract
and the final optimized contract is sufficient.

Our equivalence checking consists of the reduction from
bisimulation checking to deductive verification that the bisim-
ulation relation between two contracts is a valid inductive
invariant of the product of the two contracts. For this purpose,
we use solc-verify [17], a modular verification tool
for Solidity smart contracts. solc-verify reduces Solidity
contract verification to Boogie verification which in turn
reduced to SMT solving.

VI. EXPERIMENTS

This section presents the results of an experimental evalu-
ation of the prototype implementation of our approach. The
workstation we use for our experiments is equipped with an In-
tel Core i3-4170 3.7GHz CPU, 16GB of DDR3 RAM, 512GB
SSD running Linux Ubuntu 14.04LTS operating system in a
local network environment.

We have three separate applications running for the exper-
imental setup: (i) automated tool based on SOLIS to create
the optimized contract given an input Solidity contract, (ii)
Truffle [39] and Ganache [40] local network to evaluate gas
costs by running minimal transactions on the input and output
contracts, and (iii) Solc-verify to check the equivalence
between the input and output contracts. The open-source code
for the implementation using python is available at Github2.

A. DataSet Collection

For our experiments, we collect a benchmark of smart
contracts constituted of two data-sets. The first data-set is
constituted of 22 contracts from the benchmark contracts used
in [14]. The second data-set is based on the set of contracts
used in [29], which we extract from Etherscan [41]. In total we
extract around 72 contracts that are supported by our prototype
containing functions with loop constructs. Apart from the
restriction on loops, we also check for the Solidity version
to be v0.5.0. The versions before had breaking changes that
make solc-verify and SOLIS incompatible for compiling
and analyzing the contracts.

B. Results

We run our tool with a benchmark of 72 Solidity smart
contracts. In Table I, we report the results of the experimental
evaluation for 23 contracts which have been selected based on
a set of criteria. Contracts need to adhere to at least one of
the following criteria below:

• contracts having more than one function;
• contracts containing maximum lines of code;
• contracts that account for the maximum gas cost savings;
• contracts with deployment costs of more than 20, 000 gas

units.
The complete dataset with the cost savings and the increase in
the deployment costs can be found on the Github repository

2https://github.com/nelaturuk/loop-optimizer

Fig. 13. Comparison between deployment cost and transaction cost

with the implementation. The first two columns of Table I list
data concerning the smart contracts. The last four columns list
data concerning the application of our tool to these contracts.
We list the approximate gas cost savings. We calculate the
deployment costs for the original and the optimized contracts.
The invocation costs depict the transaction-related gas costs.
In the case of arrays or mappings being used, we set the initial
size to be 10 which is very low compared to the real-world
applications. Depending on the complexity of the code, the
average gas cost savings is 23, 943 gas units per transaction
for the contracts that we tested. We also highlight the increased
deployment cost due to the additional local variables and
the internal functions. The average increase in deployment
cost is around 16, 710 gas units. This cost will grow or fall
depending on the contract’s size and the complexity of the
implementations. The deployment cost is a one-time fee. The
transaction savings on the other hand are vital as end-users
pay the gas fees for further access to the deployed contract.
Figure 13 shows the comparison between one-time deployment
cost and transaction costs aggregated for 5 transactions. The
72 benchmark contracts are represented on x-axis. The y-axis
signifies the gas costs for both deployment and transactions.

As part of the evaluation, we verify all the 72 con-
tracts in our data-sets for bisimulation equivalence using
solc-verify. We are able to confirm the correspondence
for around 50 contracts that did not include arithmetic calcu-
lations. A significant drawback observed with solc-verify was
the semantic restrictions for predefined data types with loop
constructs due to which we are not able to verify some of the
contracts with arithmetic calculations.

C. Limitations

1) Program Synthesis: In the current setup, the set of
templates supported by CONSUL is constituted of only Map,
Fold, and Zip which restricts the number of contracts that
can be optimized using our methodology. This limitation is
one of the observations made during our evaluations. We also
could not extract summaries for contracts with complex loop
structures due to CONSUL implementation restrictions.

2) Equivalence Checker: For equivalence checking, we use
solc-verify in our experiments. Except for arithmetic



TABLE I
GAS COSTS FOR DEPLOYMENT AND TRANSACTIONS

Contract Name Lines of
Code

Number of
Functions

Deployment Cost Invocation Costs

Original Optimized Addional Cost Original Optimized Savings
SimpleAddition 36 1 90543 100221 +9678 82874 60453 -22421
SimpleMath 60 4 151729 190711 +38982 82874 60453 -22421
IfCheck 33 1 116131 142021 +25890 39414 35273 -4141
MappingWithIf 51 1 147775 154849 +7074 43542 39401 -4141
DeclarationInFor 30 1 119139 126021 +6882 97344 88891 -8453
NestedFor 20 1 117545 127427 +9882 474666 250456 -224210
AddressList 27 1 188359 192697 +4338 66243 57436 -8807
Airdrop 37 1 359969 368363 +8394 73838 58339 -15499
ALinuxGold 61 2 439885 448730 +8845 85575 76659 -8916
Allocations 35 1 107523 185596 +78073 83182 70321 -12861
ArrayTools 22 1 95901 100233 +4332 83843 60453 -23390
AshToken 23 1 104547 109753 +5206 82904 60453 -22451
BeneficiaryOptions 66 2 404778 412140 +7362 40582 31689 -8893
DividendManager 58 2 262298 268797 +6499 64725 41511 -23214
EthGain 43 3 206846 226652 +19806 646727 627425 -19302
EticaRelease 140 2 1289607 1299321 +9714 71725 50872 -20853
Future 38 4 554900 563423 +8523 477235 460444 -16791
Etheropt 31 1 175540 183466 +7926 72811 67768 -5043
IPO 50 2 1566755 1604980 +38225 526418 513412 -13006
ISDT 30 1 531584 545125 +13541 78993 69100 -9893
KYCVerification 30 1 129519 135421 +5902 444590 421341 -23249
League 32 2 1360814 1414840 +54026 89369 71305 -18064
LitionRegistry 26 1 169316 189552 +20236 68061 41632 -26429
LIXToken 47 1 97879 99606 +1727 85527 73334 -12193

calculations within the loop, we confirmed equivalence for all
the other structures. The issue with the arithmetic calculations
arises because of the encoding of unsigned Solidity integers as
mathematical integers in Boogie since they are well supported
by SMT solvers. Due to this limitation, we were not able to
check equivalence for certain contracts.

In summary, the above limitations are centered around tools
used by our implementation rather than inherent elements
of the proposed methodology. However, with the increasing
maturity of the various program analysis tools for smart
contracts, one should expect future tools to address those
limitations.

VII. CONCLUSION

A methodology for optimizing loop constructs in smart
contracts in terms of the gas costs is presented. By generating
summaries for loops using a DSL and syntactically modifying
the contracts, we synthesize optimized contracts. We addition-
ally verify the equivalence of the generated contracts with
the original contracts using refinement proofs. We implement
our methodology in a prototype tool and use this software to
optimize loops in 72 Solidity smart contracts. Our evaluation
shows that its optimizations produce significant gas cost sav-
ings. In the future we might extend our work to identify and
gather more gas-efficient patterns for control structures other
than loops for which we can use templates based synthesis
to generate concise summaries. Furthermore, for verifying
equivalence, our implementation assumes manually-provided
invariants and pre/post-conditions, which can be automated for
many contracts of interest using standard invariant-generation
techniques, e.g., [24]. Finally, another possible extension is

to extend our work to synthesize repairs for gas related
vulnerabilities in smart contracts, e.g., [11], [12].

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system.” 2008.
[Online]. Available: http://www.bitcoin.org/bitcoin.pdf

[2] V. Buterin, “What is ethereum?” Ethereum Official webpage. Available:
http://www.ethdocs.org/en/latest/introduction/what-is-ethereum.html,
2016.

[3] N. Pocher and A. Veneris, “Privacy and transparency in cbdcs: A
regulation-by-design aml/cft scheme,” in IEEE International Conference
on Blockchain and Cryptocurrency (ICBC 2021), 2021.

[4] “Carrefour says blockchain tracking boosting sales of some products.”
2019. [Online]. Available: https://www.reuters.com/article/us-carrefour-
blockchain-idUSKCN1T42A5

[5] J. Meijers, G. D. Putra, G. Kotsialou, S. S. Kanhere, and A. Veneris,
“Cost-effective blockchain-based iot data marketplaces with a credit
invariant,” in EEE International Conference on Blockchain and Cryp-
tocurrency (ICBC 2021), 2021.

[6] “Blockchain is empowering the future of insurance.” 2016.
[Online]. Available: https://techcrunch.com/2016/10/29/blockchain-is-
empowering-the-future-of-insurance/

[7] Ethereum, 2021. [Online]. Available: https://ethereum.org
[8] “Decentralized finance (defi).” 2021. [Online]. Available: https:

//ethereum.org/en/defi/
[9] “Christie’s auctions first digital-only artwork for $70m.” 2021.

[Online]. Available: https://www.theguardian.com/artanddesign/2021/
mar/11/christies-first-digital-only-artwork-70m-nft-beeple.

[10] Solidity, 2021. [Online]. Available: https://docs.soliditylang.org
[11] “Swc-126: Insufficient gas griefing.” 2021. [Online]. Available:

https://swcregistry.io/docs/SWC-126
[12] “Swc-128: Dos with block gas limit.” 2021. [Online]. Available:

https://swcregistry.io/docs/SWC-128
[13] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and

Y. Smaragdakis, “Madmax: surviving out-of-gas conditions in ethereum
smart contracts,” Proc. ACM Program. Lang., vol. 2, no. OOPSLA,
pp. 116:1–116:27, 2018. [Online]. Available: https://doi.org/10.1145/
3276486



[14] B. Mariano, Y. Chen, Y. Feng, S. K. Lahiri, and I. Dillig, “Demystifying
loops in smart contracts,” in 35th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2020, Melbourne, Australia,
September 21-25, 2020. IEEE, 2020, pp. 262–274. [Online]. Available:
https://doi.org/10.1145/3324884.3416626

[15] A. Li, J. A. Choi, and F. Long, “Securing smart contract with runtime
validation,” in Proceedings of the 41st ACM SIGPLAN International
Conference on Programming Language Design and Implementation,
PLDI 2020, London, UK, June 15-20, 2020, A. F. Donaldson and
E. Torlak, Eds. ACM, 2020, pp. 438–453. [Online]. Available:
https://doi.org/10.1145/3385412.3385982

[16] S. M. Beillahi, G. F. Ciocarlie, M. Emmi, and C. Enea, “Behavioral
simulation for smart contracts,” in Proceedings of the 41st ACM
SIGPLAN International Conference on Programming Language Design
and Implementation, PLDI 2020, London, UK, June 15-20, 2020, A. F.
Donaldson and E. Torlak, Eds. ACM, 2020, pp. 470–486. [Online].
Available: https://doi.org/10.1145/3385412.3386022
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