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Abstract. Signal-flow-graph theory provides an efficient framework to
model various engineering and physical systems at a higher-level of
abstraction. In this paper, we present the formalization of the signal-
flow-graph theory with an ultimate goal to conduct the formal analysis
of engineering systems within a higher-order-logic theorem prover. In par-
ticular, our formalization can tackle system models which are based on
undirected graphs. We also present the formalization of the system trans-
fer function and associated properties such as stability and resonance.
In order to demonstrate the effectiveness of our work, we present the
formal analysis of two engineering systems namely the PANDA Vernier
resonator and the z-source impedance network, which are commonly used
in photonics and power electronics, respectively.

1 Introduction

A signal-flow-graph (SFG) [17] is a diagram that represents a set of simultaneous
linear algebraic equations describing the flow of different physical quantities
(e.g., electric current) from one point of the system to another point. Many
physical and engineering systems ranging from analog circuits to photonic signal
processors can be represented using the signal-flow-graph theory. Generally, there
are two types of SFGs, i.e., directed and undirected [23,24]. In a directed SFG,
nodes should be ordered, whereas an undirected SFG does not require a strict
ordering of nodes which makes it more convenient to model a variety of systems
such as photonic filters and analog power converters.

Once an SFG representation of the underlying system has been built, the next
step is to analyze the corresponding behavior to ensure that the system meets
its specification. The Mason’s Gain Formula (MGF) [15,16] provides an efficient
way to obtain a transfer function (input-output relation) directly from the SFG
representation. Moreover, the obtained transfer function is used to investigate
different properties of the system such as stability (which ensures that the output
is bounded whenever the input in bounded). Some of the main applications of
MGF include the analysis of wireless networks [14], security protocols [7], process
engineering [13], power electronics [12,20] and photonic signal processing [5].

In the past few decades, formal methods [6] have been successfully applied
to improve the analysis of a variety of software, hardware and physical systems.
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The main idea behind formal analysis of a system is to construct a computer
based mathematical model of the given system and formally check that the model
meets its specifications. The rigorous process of building a mathematical model
for the given system and analyzing this model using mathematical reasoning
usually increases the chances for catching subtle but critical design errors that are
often ignored by traditional techniques such as paper-and-pencil based proofs,
numerical methods or simulation. Given the extensive usage of signal-flow-graph
to model engineering systems that are employed in safety-critical applications,
we believe that there is a dire need of building a formal framework to reason
about the signal-flow-graph theory.

The involvement of complex-valued parameters requires an expressive tech-
nique to formalize the notions of the signal-flow-graph theory and MGF. Higher-
order-logic (HOL) theorem proving [11] is a generic formal methods technique
which provides such an expressive formalism to reason about multivariate analy-
sis. In [4], we used the HOL Light theorem prover to formalize the notion of
signal-flow-graph theory and the procedure to obtain the transfer function for
directed SFGs based on MGF. We applied this formalization to verify the sta-
bility of power electronic converters. However, this formalization can only be
used for directed SFGs which limits its usage for many practical systems. In this
paper, we build upon our previous work and formalize undirected SFG theory
and MGF along with the notion of system stability. We apply this formaliza-
tion to two distinct domains, i.e., power electronics and photonics. Indeed, we
present in this paper the formal verification of z-source impedance network [10]
and PANDA Vernier resonator [1] which are commonly used systems in power
electronics and photonics, respectively. The source code of our formalization is
available for download [2] and can be utilized by other researchers and engineers
for further developments and the analysis of more practical systems.

The rest of the paper is organized as follows: we give a preliminary review of
the SFG theory and the Mason’s Gain Formula in Sect. 2. We present the HOL
formalization of undirected SFGs in Sect. 3. Consequently, in Sect. 4, we provide
the formalization of transfer functions along with the notion of stability and
resonance. We describe the formal analysis of the z-source impedance network
and PANDA Vernier resonator as illustrative practical applications in Sects. 5
and 6, respectively. Finally, Sect. 7 concludes the paper and provides hints for
some future directions.

2 Signal-Flow Graphs Theory and Mason’s Gain Formula

Mathematically, a signal-flow-graph represents a set of linear algebraic equa-
tions of the corresponding system [16]. An SFG is a network in which nodes are
connected by directed branches. Every node in the network represents a system
variable and each branch represents the signal transmission from one node to the
other under the assumption that signals flow only in one direction. An example
of an SFG is shown in Fig. 1 consisting of six nodes. An input or source node and
an output or sink node are usually the ones which only have outgoing branches
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and incoming branches, respectively (e.g., nodes 1 and 6 in Fig. 1). A branch is
a directed line from node i to j and the gain of each branch is called the trans-
mittance. A path is a traversal of connected branches from one node to the other
and if no node is crossed more than once and connects the input to the output,
then the path is called forward path, otherwise if it leads back to itself without
crossing any node more than once, it is considered as a closed path or a loop. A
loop containing only one node is called a self loop and any two loops in the SFG
are said to be touching loops if they have any common node. The total gain of
a forward path and a loop can be computed by multiplying the transmittances
of each traversed branch. In the analysis of practical engineering systems (resp.
process), the main task is to characterize the relation among the system’s (resp.
process) input and output which is called the transfer function. The total trans-
mittance or gain between two given nodes (usually input and output) describes
the transfer function of the corresponding system. In 1953, Mason [16] proposed
a computational procedure (also called Mason’s Gain Formula) to obtain the
total gain of any arbitrary signal-flow-graph. The formula is described in Eq. 1
as follows:

G =
∑

k

GkΔk

Δ
(1)

Δ = 1 −
∑

m

Pm1 +
∑

m

Pm2 −
∑

m

Pm3 + . . . + (−1)n
∑

. . . (2)

where Δ represents the determinant of the graph, Δk represents the value of
Δ for the part of the graph that is not touching the kth forward path and
it is called the cofactor of forward path k, Pmr is the gain product of mth

possible combination of r non-touching loops. The gain of each forward path is
represented by Gk.

For example, in Fig. 1 taking the nodes 1 and 6 as the input and output
nodes, respectively. There is one forward path (1 → 2 → 3 → 4 → 5 → 6) and

1 5 6

3 4

2

g23
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g52

g22

g45

g56g12

Fig. 1. A signal-flow graph
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three loops (2 → 2, 2 → 3 → 4 → 5 → 2 and 3 → 4 → 3). Thus, we can find the
input to output transfer function using the MGF as follows:

G =
g12.g23.g34.g45.g56

1 − g22 − g23.g34.g45.g52 − g34.g43 + g22.g34.g43
(3)

3 Formalization of Undirected Signal-Flow-Graph Theory

We model a single branch as a triplet (a, tab, b), where a, tab and b represent the
start node, the transmittance and the end node, respectively. Consequently, a
path can be modeled as a list of branches and furthermore an SFG can be defined
as a composition of paths along with the information about the total number of
nodes in the circuit, the source and the sink nodes at which we want to compute
the transfer function. As mentioned before, nodes and transmittance represent
the system variables and gain, respectively. These parameters are indeed com-
plex valued, i.e., a, tab, c ∈ C in the general context of engineering and physical
systems. However, the information about the nodes is just used to find proper-
ties of signals (current) transmission and they do not appear in the gain and
transfer function computation. So, we adapted the conventional approach as in
[16], where nodes of an SFG are represented by natural numbers (N). In order
to simplify the reasoning process, we encode the above information by defining
three type abbreviations in HOL Light1, i.e., branch, path and signal-flow-graph
as follows:

Definition 1 (Branch, Path and SFG).

new type abbrev ("branch", ‘:N × C × N‘)
new type abbrev ("path", ‘:(branch)list‘)
new type abbrev ("sfg", ‘:path × N × N × N‘)

where the second, third, and fourth elements of sfg represent the size, the output
node and the input node of a signal-flow graphs, respectively. It is important
to notice that in the definition of the branch, we did not add any constraint
regarding the order of the two nodes of the branch which makes this formalization
valid for both cases of directed and undirected graphs.

Our next main task is to find all forward paths and loops from the source
node to the sink node for the given system. In [4], we implemented a search
algorithm proposed in [24], which considers only directed graphs. In order to
extend this work to cover both types (i.e., directed and undirected) of SFGs, we
enhanced this algorithm by using some new features of the graph.

In [24], the author used two matrices (G and H) and a vector (P) to perform
the search in an SFG. The matrix G contains the information about the graph,
in particular, each row i of G contains the nodes where there are branches from
i that end at these nodes. The vector P contains the path under consideration

1 In this paper, we use minimal HOL Light syntax in the presentation of definitions
and theorems to improve the readability.
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in the search process, where the first element in the vector is the head of the
path from which the search begins to construct the path. The matrix H is to
ensure that we do not extract the same path twice. Each row i in the matrix H
contains the nodes that cannot form a path with i (dead nodes). The procedure
for extracting the loops can be subdivided into five steps as follows:

1. We first extract the graph information inside the matrix G and initialize the
matrix H to 0. Then we initialize the elements of the vector P to 0 except the
first element (which we initialize to 1) from which the search will start.

2. In the second step, we have a node i which is the tail of the vector P and we
search for a node j in the graph that satisfies three conditions: (a) j is not in
P (i.e., j is not already part of the path); (b) j is not in H(i) (i.e., j is not
a dead node for i); (c) j >i (i.e., all paths are directed). The last condition
constraints the application of this procedure on undirected SFGs. If j is found
we add it in the vector P and repeat the process by replacing i by j. Finally,
if no j is found, we stop the search and move to the next step.

3. In the third step, we want to confirm that the found path in the previous
step is indeed a loop. If a loop is found, we report it and in all cases we go to
the next step.

4. In this step, we confirm that an exhaustive search has been performed for all
the loops that can start from the head of the vector P, otherwise, we initialize
the row of H that contains all the dead nodes to the last node of vector P.

5. In this step, we check if the head of the vector P is the last node in the graph
which indicates the termination of the search, otherwise, we replace the head
of the vector P by the next node in the graph and we go back to the second
step.

Note that the above procedure with slight modifications can be used for
the forward path extraction. In order to extend this algorithm for undirected
SFGs, we add two new matrices G1 and H1. The matrix G1 contains some extra
information about the graph where each row i contains the nodes where there
are branches that start from these nodes and end at i. In graph theory, any
element of a loop can be the head of the loop. Therefore, for computing loops
this means that if we once did exhaustive search for all the loops that start from
a certain node i then in the search for loops that start from another node j we
do not need to consider the node i. This means i is a dead node for j. Hence,
the matrix H1 keeps track of these new dead nodes. The corresponding changes
in the Steps 2 and 5 are summarized as follows:

– We change the third condition for extending the search and replace it by
checking if j is not in H1(i) (means j is not a dead node for i).

– We add a new procedure by inserting the head of P in all the rows i of H1 if
there is a branch that starts from node i and ends at the head of P.

We next provide the definitions of two crucial functions in our formalization of
undirected SFG that perform the Steps 2 and 5. The complete HOL formalization
of the SFG theory can be found at [2].
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Definition 2 (Next Node Search).

� ∀(n m ∈ N) (t1 t2 l1 l2 h1 ∈ N list).
EC next node n m [] t2 l1 l2 h1 = 0 ∧
EC next node n (m + 1) (e1::t1) (e2::t2) l1 l2 h1 =
EC next node n m (e1::t1) t2 l1 l2 h1 ∧
EC next node n 0 (e1::t1) (e2::t2) l1 l2 h1 =
if ((NOT IN LIST e1 l1) ∧ (NOT IN LIST e1 l2) ∧ (NOT IN LIST e1 h1))
then n + 1 else EC next node (n + 1) 0 t1 (e2::t2) l1 l2 h1

where the vector P, the row H(i), and the row H1(i) are represented as the lists l1,
l2, h1, respectively. The function NOT IN LIST accepts a list and an element and
tests the membership of the element. The main function EC next node returns
(n + 1), which represents the position of the node e1 inside the list G[k] (list t1
in the definition) that satisfies the three conditions in Step 2, where k is the
termination node for the considered path. In the process of searching for a path
all the graph nodes are considered.

Next, we define the procedure to update the matrix H1 after completing the
search for loops that start from a given node e1. Here, e1 will be a dead node
for all nodes for which branches exist that end at e1:

Definition 3 (Updating the Matrix H1).

� ∀ (e1 : num) (H1 : (num list) list) (l : num list).
EC H1 MODIFIED e1 H1 [] = H1 ∧
EC H1 MODIFIED e1 H1 (h::l) =
EC H1 MODIFIED e1 (EC H1 REPLACE (EC H MODIFIED0 H1[h − 1] e1) (h − 1) H1) l

where EC H MODIFIED0 accepts an element e1 and a list l (i.e., H1[h − 1]) and
searches for the leftmost zero in the list l and replaces it by e1. The func-
tion EC H1 REPLACE takes a list l (i.e., EC H MODIFIED0 H1[h − 1] e1), an integer
(h − 1) and the matrix then it replaces the row H1[h − 1] by l inside the matrix H.

A transpose of an SFG can be obtained by inverting all the branches and
swapping input and output. We formally define the inversion of branches as
follows:

Definition 4 (Inverse of Graph Branches).

� ∀ (l : path). SFG INVERSE [] = [] ∧ SFG INVERSE e :: l =
(lst of trpl e, snd of trpl e, fst of trpl e)::SFG INVERSE l

Here fst of trpl, snd of trpl, and lst of trpl return the first, second, and
last element of a given triple, respectively. Using this definition, we formalize the
graph transposition as follows:

Definition 5 (Graph Transpose).

� ∀ sfg. SFG TRANSPOSE sfg =
(SFG INVERSE (fst of four sfg), snd of four sfg,
lst of four sfg, thd of four sfg)

In the next section, we provide the formalization of transfer function, Mason’s
gain formula and some associated properties.
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4 Formalization of Transfer Function

As described in Sect. 2, Meson’s Gain Formula requires the list of all loops to
find the graph determinant and the list of forward paths to compute the graph
numerator. We provide in below the main definition in the transfer function
formalization, however, the complete formalization can be found at [2].

Definition 6 (Mason’s gain formula).

� ∀ (system : sfg). Mason Gain system =
PRODUCT FORWARD DELTA (EC system) (FC system)

DETERMINANT (EC system)

where Mason Gain accepts an SFG (i.e., system) and returns the Mason’s gain
as given in Eq. 1. Notice that the function PRODUCT FORWARD DELTA accepts the
lists of loops and forward paths (computed in Sect. 3) in the graph and computes∑
k∈system

GkΔk, where Gk and Δk represent, respectively, the product of all forward

path gains and the determinant of the kth forward path considering the elim-
ination of all loops touching the kth forward path as described in Sect. 2. The
function DETERMINANT takes the list of loops and produces the determinant of the
graph as described in Eq. (2). Finally, we utilize the above formalization along
with loops and forward paths extraction procedures to formalize the transfer
function of a given engineering system as follows:

Definition 7 (System Transfer Function).
� ∀ system. transfer function system = Mason Gain (λs. system s)

where the function transfer function accepts a system which has type
C → sfg and returns a complex (C) number which represents the transfer func-
tion of the engineering system (i.e., system). Here “s” is a complex parameter
of the given system.

The availability of the transfer function provides the facility to analyze the
stability and resonance conditions for the given system. Mathematically, the
stability and resonance are concerned with the identification of all the values of
s for which the system transfer function becomes infinite and zero, respectively.
In the control theory and signal processing literature, these values are called
system poles and system zeros which can be computed by the denominator and
numerator of the transfer function, respectively. Furthermore, all poles and zeros
must be inside the unit circle which means that their complex norm should be
less or equal to 1. We formalize the above mentioned informal description of the
system properties in HOL as follows:

Definition 8 (System Poles).
� ∀ system. poles system = {s | denominator (system s) = 0}
� ∀ system. zeros system = {s | numerator (system s) = 0}
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where the functions poles and zeros take the system as a parameter and return
the set of poles and zeros, respectively. Next, we formalize the notion of stability
and resonance as follows:

Definition 9 (System Stability and Resonance).

� ∀ system. is stable system [p0, ..., pn] ⇔
∀pi. pi ∈ (poles system) ∧ ‖ pi ‖≤ 1

� ∀ system. is resonant system [z0, ..., zn] ⇔
∀zi. zi ∈ (zeros system) ∧ ‖ zi ‖≤ 1

where the predicate is stable accepts a signal-flow-graph model (i.e., system)
and a list of poles [p0, ..., pn] and verifies that each element pi is indeed a pole of
the system and its corresponding magnitude (i.e., norm of a complex number,
‖ pi ‖) is smaller or equal to 1. The predicate is resonant is defined in a similar
way by considering the list of zeros instead of the list of poles of the system. In
the above formalization, pi and zi are continuous complex functions.

In the following sections, we present the formal analysis of two engineering
systems namely z-source impedance network and PANDA Vernier resonator. It is
important to notice that the SFG of the PANDA Vernier resonator is undirected
(e.g., the branch between the nodes 10 and 5). Furthermore, the SFG of the z-
source impedance network is directed, however, its transpose is undirected.

5 Z-Source Impedance Network

The z-source is an impedance-source power converter that is considered to be
more efficient than other commonly used power converters [19]. In [18], the
authors claimed that the model of z-source can be applied to almost all DC-to-
AC, AC-to-DC, AC-to-AC, and AC-to-DC power conversions. Thus it has been
used in hybrid electric vehicles with dual mode, i.e., as a boost converter and
buck converter [8]. The topology of z-source is composed of two-port network
that consists of a split-inductors L1 and L2 and capacitors C1 and C2 connected
in X shape [18]. The circuit configuration of the z-source impedance network is
shown in Fig. 2, and its associate signal-flow-graph is depicted in Fig. 3 [10]. We
first formally define the z-source impedance network model as follows:

Definition 10 (Z-source Impedance Network Model).

� ∀ G1 G2 DA DD G5 R L C s ∈ C.
ZSOURCE model G1 G2 DA DD G5 R L C s =

[(1, G1, 4); (1, G2, 7); (2, DA, 4); (3, R.DA, 4); (3,−DA, 7); (4, 1, 5); (5, 1
L.s , 6);

(6, G5, 4); (6, DD, 7); (6, 1, 9); (7, 1, 8); (8, 1, 9); (8, 1
C.s , 11); (9, 1, 10); (11, DD, 4);

(11, 2, 12)]
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Fig. 2. Schematics of Z-source converter

where ZSOURCE model represents the SFG of the z-source circuit depicted in
Fig. 3 and it accepts the circuit parameters as the graph variables. We next
formally verify the transfer function for the z-source impedance network between
nodes 1 and 12 as follows:

Theorem 1 (Transfer Function of Z-source).

� ∀ G1 G2 DA DD G5 R L C s ∈ C. (C.L 
= 0) ∧ (s 
= 0) =⇒
transfer function (ZSOURCE model G1 G2 DA DD G5 R L C s, 12, 12, 1) =
2(G2.L.s + G1.DD − G2.G5)
L.C.s2 − G5.C.s − DD2

where the two assumptions ensure that the gains 1
Ls

and 1
Cs

are well defined.
The proof steps of the transfer function formula are mainly automated using a
developed tactic that can be found at [2]. Similarly, we can derive other transfer
functions which are listed in Table 1. Next, we present the formal verification
of the stability conditions of the z-source impedance network under the global
parameters:

Theorem 2 (Stability Conditions for Z-source).

� ∀ G1 G2 DA DD G5 R L C ∈ C.

‖ G5.C−
√

(G5.C)2+4.(L.C).DD2

2.L.C ‖≤ 1 ∧ ‖ G5.C+
√

(G5.C)2+4.(L.C).DD2

2.L.C ‖≤ 1 ∧
G5.C+

√
(G5.C)2+4.(L.C).DD2

2.L.C 
= 0 ∧ C.L 
= 0 ∧ G5.C−
√

(G5.C)2+4.(L.C).DD2

2.L.C 
= 0 =⇒
is stable (λ s. (ZSOURCE model G1 G2 DA DD G5 R L C s, 12, 12, 1)) s

[ G5.C−
√

(G5.C)2+4.(L.C).(DD2)

2.L.C ; G5.C+
√

(G5.C)2+4.(L.C).(DD2)

2.L.C ]
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Table 1. Z-source transfer functions

Transfer Function Formula

(C.L �= 0) ∧ (s �= 0) ⇒
~Vsum
~Vdc

SFG Main ((ZSOURCE model G1 G2 DA DD G5 R L C s), 12, 12, 2) =
2.DA.DD

(L.C.s2 − G5.C.s − DD2)
(C.L �= 0) ∧ (s �= 0) ⇒

~Vsum
Iload

SFG Main ((ZSOURCE model G1 G2 DA DD G5 R L C s), 12, 12, 3) =
−2.DA.(L.s − R.DD − G5)

(L.C.s2 − G5.C.s − DD2)
(C.L �= 0) ∧ (s �= 0) ⇒

Iin
~Vdc

SFG Main ((ZSOURCE model G1 G2 DA DD G5 R L C s), 12, 10, 2) =

DA.(1 + DD).C.s

L.C.s2 − G5.C.s − DD2

Fig. 3. Signal-flow-graph of Z-source converter

The first two assumptions ensure that both poles are inside the unit circle,
whereas the last assumptions are required to prove that the poles are not equal
to zero. Similarly, we verify the resonance condition for the z-source impedance
network circuit as follows:

Theorem 3 (Resonance Conditions for Z-source).

� ∀ G1 G2 DA DD G5 R L C ∈ C.
‖ G2.G5−G1.DD

G2.L ‖≤ 1 ∧ G2 
= 0 ∧ (G2.G5 − G1.DD) 
= 0 ∧ C.L 
= 0 =⇒
is resonant (λ s. (ZSOURCE model G1 G2 DA DD G5 R L C s, 12, 12, 1)) s

[ G2.G5−G1.DD
G2.L ]

The assumptions in the theorem ensure that the system zero is inside the unit
circle and it is not equal to zero. The proof steps for the two theorems are mainly
based on first checking that the poles (resp. zeros) belong to the set of poles (resp.
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Fig. 4. Signal flow graph of Z-source converter transpose

zeros) defined in Definition 9. Then checking that the norm of these poles and
zeros are less or equal to 1 using HOL rewriting rules. For electronic circuits,
signal-flow-graph has a particular interesting feature, as shown in [20], namely,
the transfer function of circuit transposition is the same as the original circuit.
For example, Fig. 4 shows the transposed SFG of the z-source impedance net-
work. We formally verified that the transfer functions of the z-source impedance
network signal-flow-graph and its transpose (which is an undirected signal-flow-
graph) are the same:

Theorem 4 (Transfer Function of Z-source Transpose).

� ∀ G1 G2 DA DD G5 R L C s ∈ C. (C.L 
= 0) ∧ (s 
= 0) =⇒
transfer function (SFG TRANSPOSE (ZSOURCE model G1 G2 DA DD G5 R

L C s, 12, 12, 1)) =
2.(G2.L.s + G1.DD − G2.G5)

L.C.s2 − G5.C.s − DD2

In the next section, we show another utilization of undirected SFG formalization
to verify the transfer function of PANDA Vernier Resonator.

6 PANDA Vernier Resonator

The PANDA Vernier resonator is considered as a viable optical device for com-
munication and signal processing [1,22]. It can also be employed as a force sensing
application with a resolution in the range of micro-Newton. Figure 5 shows the
configuration of the PANDA Vernier resonator where we have 4 optical direc-
tional couplers and 3 rings [1]. The directional couplers are optical devices that
transfer the maximum possible optical power from one or more optical devices
to another one in a selected direction. Optical rings are fiber rings that con-
fine the light in a very small volume to perform different operations such as
light amplification and wavelength filtering. Each coupler i is associated with
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Fig. 5. The PANDA resonator

the factor ki (i = 1, 2, r, l) and the insertion loss γ. Consequently, the fraction of
light passed through the through port of the coupler i is Ci =

√
(1 − γ)(1 − ki)

and the fraction passed through the cross path is Si =
√

(1 − γ)ki. Note that
C2

i + S2
i = 1 − γ  1. Moreover, for each ring (i.e., main, right, and left) the

parameter ep
i ≡ XiZ

−p (i = l, r) is the multiplication of the one round-trip loss
coefficient Xi = exp(−αLi

2 ) and the transmission of light Z−p = exp(−jϕp),
where ϕ = kneffL is the phase shift and p is the integer resonant mode num-
bers. The associated undirected SFG of PANDA resonator [1] is shown in Fig. 6.
We formally define the PANDA Vernier resonator model as follows:

Definition 11 (PANDA Vernier Resonator Model).

� ∀ er e el nr n nl sr s1 s2 sl cr c1 c2 cl ∈ C.
PANDA model er e el nr n nl sr s1 s2 sl cr c1 c2 cl =

[(1, c1, 3); (1,−j.s1, 4); (2, c1, 4); (2,−j.s1, 3); (4, 4
√

en, 9); (9, cr, 10);

(9,−j.sr, 12); (12,
√
ernr, 13); (13,

√
ernr, 11); (11,−j.sr, 10); (11, cr, 12);

(10, 4
√

en, 5); (5, c2, 7); (5,−j.s2, 8); (6, c2, 8); (6,−j.s2, 7); (7, 4
√

en, 14);

(14, cl, 15); (14,−j.sl, 17); (17,
√
elnl, 18); (18,

√
elnl, 16); (16, cl, 17);

(16,−j.sl, 15); (15, 4
√

en, 2)]

Based on this definition, we formally prove the optical transfer function for the
through port of the PANDA Vernier resonator between nodes 1 and 3, as follows:

Theorem 5 (Transfer Function of the through port).
� ∀ er e el nr n nl sr s1 s2 sl cr c1 c2 cl ∈ C.
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Fig. 6. Signal flow graph of the PANDA resonator

(c12 + s12) = 1 ∧ (c22 + s22) = 1 ∧ (cr2 + sr2) = 1 ∧ (cl2 + sl2) = 1 =⇒
transfer function (PANDA model er e el nr n nl sr s1 s2 sl cr

c1 c2 cl, 18, 3, 1) = {c1.(1 + cl.cr.ernr.elnl − cl.elnl − cr.ernr) +
c2.en.(cl.ernr + cr.elnl − cr.cl − ernr.enl)}

{1 − cl.elnl − cr.ernr − cr.cl.c1.c2.en + cl.cr.ernr.elnl +
cl.c1.c2.ernr.en + cr.c1.c2.elnl.en − c1.c2.ernr.elnl.en}

We also formally verify the drop-port optical transfer function for the
PANDA Vernier resonators between nodes 1 and 8, as follows:

Theorem 6 (Transfer Function of the drop-port).
� ∀ er e el nr n nl sr s1 s2 sl cr c1 c2 cl ∈ C.

(c12 + s12) = 1 ∧ (c22 + s22) = 1 ∧ (cr2 + sr2) = 1 ∧ (cl2 + sl2) = 1 =⇒
transfer function (PANDA model er e el nr n nl sr s1 s2 sl cr

c1 c2 cl, 18, 8, 1) = {s1.s2.ernr.√en − s1.s2.cl.elnl.ernr.
√
en −

cr.s1.s2.
√
en + cr.cl.s1.s2.elnl.

√
en}

{1 − cl.elnl − cr.ernr − cr.cl.c1.c2.en + cl.cr.ernr.elnl +
cl.c1.c2.ernr.en + cr.c1.c2.elnl.en − c1.c2.ernr.elnl.en}
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To this point, we have completed our formal verification of the PANDA
Vernier transfer functions based on our formalization of undirected SFG theory.
Note that we can perform the stability and resonance analysis for the PANDA
Vernier resonator as outlined for the z-source impedance network.

In engineering practices, verification and analysis tools must be largely auto-
mated to be effectively adopted which limits the usage of interactive theorem
provers in industry. Therefore, in order to reduce the user interaction, we devel-
oped an automation procedure; SFG TAC that carries 100% of the proof steps for
extracting loops and forward paths automatically and 90% of the proof steps for
the transfer function. Hence, our reported work can be considered as a one step
towards an ultimate goal of building automatic tools which make use of interac-
tive theorem provers as a certification tool in the design and analysis cycles of
safety-critical real-world systems from different engineering and physical science
disciplines (e.g., signal processing, control systems, power electronics, biology,
optical and mechanical engineering). It is important to note that during our for-
mal analysis of the two engineering applications, we were able to catch missing
parts in the three transfer functions, given in Table 1 in reference [10]. We have
also found a sign mismatch in [1]. We believe this to be a significant feature of
our formalization as compared to the traditional analysis methods.

7 Conclusion

In this paper, we reported a generic formalization of undirected signal-flow-
graph theory targeting any kind of engineering system that can be modeled in
the form of a signal-flow-graph. We provided an overview of our formalization
including the notion of loop extraction and the transposition of a signal-flow-
graph. Consequently, we derive the transfer functions of two real-world engi-
neering applications: (1) the PANDA Vernier resonator; and (2) the z-source
impedance network. We described the formal analysis of the stability and res-
onance conditions for the z-source impedance network. Moreover, we formally
verified that the z-source impedance network and its transpose have the same
transfer function.

Our immediate future work is to develop upon the existing automation pro-
cedures to fully automate the proof process and to build a tool that makes
use of these procedures for the analysis of engineering systems (e.g., photonics
processors [21] and process engineering [3]). Another potential utilization of our
formalization and developed automation tactics is to build a framework to cer-
tify the results produced by informal tools such as MATLAB based SFG analysis
program (available at [9]).
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