IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

1333

LMPT: A Novel Authenticated Data Structure to
Eliminate Storage Bottlenecks for High
Performance Blockchains

Jemin Andrew Choi, Sidi Mohamed Beillahi
, Graduate Student Member, IEEE, Peilun Li, Andreas Veneris, and Fan Long

Panagiotis Michalopoulos

Abstract—We present the Layered Merkle Patricia Trie
(LMPT), a performant storage data structure for processing
transactions in high-throughput systems when compared to
traditional Merkle Patricia Tries used in Ethereum clients.
LMPTs keep smaller intermediary tries in memory to alleviate
read and write amplification from high-latency disk storage. As
an additional feat, they also allow for the I/O and transaction
verifier threads to be scheduled in parallel and independently.
LMPTs can ultimately reduce significant I/O traffic that happens
on the critical path of transaction processing. Empirical results
show that LMPTs can process up to x 6 more transactions
per second on real-life ERC20 smart contract workloads when
compared to existing Ethereum clients.

Index Terms—Blockchain, data storage, transaction execution,
Merkle Patricia trie.

I. INTRODUCTION

OPULARIZED by cryptocurrencies [3], [32], blockchain

platforms have become increasingly prevalent today.
Among others, they enable decentralized ledgers at Internet-
of-scale that fuel innovation in diverse industries such as
finance [15], supply chain [45], and healthcare [29]. One
issue that continues to challenge their wider adoption is their
limited transaction throughput. In our context, a transaction
is a signed message that occurs between externally owned
addresses (EOAs) and/or smart contracts. The transaction’s
message encodes a function call that contains one or more
operations to execute. Transactions are packed in a block
that is recorded on the blockchain. To ensure safety, the
consensus protocols used by blockchain platforms like Bitcoin

Manuscript received 26 October 2022; revised 27 October 2023; accepted
14 December 2023. Date of publication 22 December 2023; date of current
version 15 April 2024. The associate editor coordinating the review of this arti-
cle and approving it for publication was H. Lutfiyya. (Corresponding author:
Sidi Mohamed Beillahi.)

Jemin Andrew Choi is with the Department of Computer Science,
University of Toronto, Toronto, ON MS5S 3HS, Canada (e-mail: choi@
cs.toronto.edu).

Sidi Mohamed Beillahi, Andreas Veneris, and Fan Long are with the
Department of Computer Science and the Department of Electrical and
Computer Engineering, University of Toronto, Toronto, ON MSS 3HS,
Canada (e-mail: sm.beillahi@utoronto.ca; veneris@eecg.toronto.edu; fanl@
cs.toronto.edu).

Srisht Fateh Singh and Panagiotis Michalopoulos are with the
Department of Electrical and Computer Engineering, University of Toronto,
Toronto, ON MS5S 3HS, Canada (e-mail: srishtfateh.singh@mail.utoronto.ca;
p.michalopoulos @mail.utoronto.ca).

Peilun Li is with Shanghai Tree-Graph Blockchain Research Institute,
Shanghai 200031, China (e-mail: peilun.li@confluxnetwork.org).

Digital Object Identifier 10.1109/TNSM.2023.3346202

, Srisht Fateh Singh,

and Ethereum conservatively apply slow block generation rates
and restrict block sizes. Consequently, this allows them to
process only 7 to 30 transactions per second (TPS) [24], [40],
when compared to traditional centralized systems that can
parse thousands of transactions per second.

To address this bottleneck, new consensus protocols have
been proposed in recent years. For example, Algorand [19],
Conflux [27], Prism [12], and OHIE [49] can process thou-
sands of transactions per second. In doing so, innovations
in high throughput ledgers also revealed an important but
overlooked challenge in the blockchain community: trans-
action execution performance. Particularly, transactions that
frequently access the blockchain state tend to become the
new performance bottleneck that limits the overall through-
put of a blockchain platform. For instance, when importing
previously downloaded transactions, popular Ethereum clients
like GoEthereum [4] and OpenEthereum [5] can only process
700 TPS on a laptop with a SSD, which is significantly lower
than the capability of many new consensus protocols [25].

In the Ethereum blockchain, we can distinguished two types
of nodes: full and light nodes. A full node synchronizes
and executes all transactions and maintains the blockchain
state. A light node only synchronizes blocks headers without
transactions and the blockchain state. The blockchain state in
Ethereum is a key-value structure that maps account addresses
and persistent state to the corresponding account metadata
and values. If a light node requires the value of a given
key, it queries a full node. However, since Ethereum follows
permissionless protocol there exist a mechanism to ensure that
the light node does not need to trust the full node in order to
use its response (known as the authenticated ledger state). In
particular, the Ethereum protocol requires miners to compute
a commitment (known as the state root) of the blockchain
state and add the latest computed commitment in the generated
blocks headers. Thus, when responding to a query from a
light node, a full node generates a proof based on the latest
commitment of the blockchain state that can be verified against
the blocks headers the light node keeps.

Previous studies have shown that the bottleneck of executing
transactions in Ethereum clients is of processing read/write
operations on the underlying blockchain state [25], [38]. In
particular, to ensure the authenticated ledger state mecha-
nism Ethereum stores its state as a Merkle Patricia Trie
(MPT) [46]. Each node in the trie has up to sixteen children
where each path from the root to a leaf node corresponds

1932-4537 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The University of Toronto. Downloaded on April 23,2024 at 04:56:11 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6526-9295
https://orcid.org/0000-0002-5422-8786

1334

to a hexadecimal-encoded key and the leaf node holds the
corresponding value of the key. Furthermore, each inner node
in the MPT contains the hash result of all of its children. As
such, a Merkle proof of a key-value pair consists of hashes
of all nodes along the path to the leaf node of the key. The
root hash value is published globally in the header of each
Ethereum block so that anyone can verify the key-value pair
with the proof. Thus, a blockchain full node maintaining the
entire state can generate authenticated proofs of key-value
pairs in the state, and a light node can verify the proofs without
the need to trust the full node.

The trust resulting from the authenticated ledger state
mechanism comes with costly performance drawbacks since
read/write operations in MPT are slow: 1) a read/write to a
key-value pair is amplified to multiple I/O operations of all
nodes along the corresponding path of the key in the MPT, 2) a
write operation recomputes the hashes of all inner nodes along
the path in the MPT, and most importantly, 3) the transaction
execution thread has to wait for costly read/write operations
to complete before it continues to the next instruction or
transaction. Notably to those observations is the fact that to
ensure deterministic execution outcomes, blockchain clients
execute transactions sequentially in a single thread.

This paper presents the Layered Merkle Patricia Trie (LMPT),
a novel authenticated storage structure for high performance
blockchains. LMPTs can directly operate with transaction
execution engines that implement the Ethereum Virtual Machine
(EVM) [46]. The empirical results presented show that LMPTs
speed up the transaction execution throughput by up to 6 times.
The net-effect is that, in conjunction with existing innovations
on consensus algorithms, LMPTs can significantly improve the
transaction throughput of blockchain platforms.

The LMPT consists of a Snapshot MPT and a flat key
value store that holds the blockchain state at a recent block
height, an Intermediate MPT that contains updates to the
blockchain state on top of the Snapshot MPT, and a Delta
MPT that contains updates on top of the Intermediate MPT.
LMPT records new updates to the blockchain state first into
the Delta MPT. For a predetermined number of blocks (e.g.,
1000 blocks), LMPT merges the updates from the Intermediate
MPT into the Snapshot MPT to form a new one. Then, the
old Delta MPT becomes the new Intermediate MPT and the
new Delta MPT is emptied.

One advantage of the LMPT design is reduced intensity
and amplification of read and write operations. Because the
Intermediate MPT and the Delta MPT only hold recent updates
to the blockchain state, they are small enough to be stored
entirely in memory. Evidently, the small depths of the two tries
reduce the I/O amplification of reads and writes. In addition,
as more decentralized applications (DApps) move into the
blockchain ecosystem, popular smart contracts are expected to
have greater localized access patterns on blockchain state [7].
Consequently, most reads and writes in the transaction exe-
cution thread will only access the intermediate and/or Delta
MPTs, which are cached in memory.

Another advantage of LMPT is to decouple the expensive
disk I/O operations from the critical transaction execution
thread as much as possible. Furthermore, the blockchain

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

clients can parallelize the construction of Snapshot MPTs with
the transaction execution thread. Reads that do not require
authentication can be executed from an internal flat key value
store, instead of querying the full trie.

We evaluated LMPT with real-world workloads and
benchmarks for simple payments and ERC20 smart con-
tracts [1], [18]. We sampled 500,000 transactions from
Ethereum, and packed blocks to simulate blocks on the real
network based on gas limits. Our results show that LMPT is
able to considerably outperform the Ethereum MPT for larger
genesis states under the same hardware constraints and system
usage. LMPTs are able to sustain up to 3000 TPS for simple
payments and 2000 TPS for ERC20 smart contracts for 10
million senders in the genesis state, which is roughly x 6
faster than the existing MPT structure in Ethereum clients.
We also evaluated LMPT with 500,000 transactions workload
of the more complex Uniswap smart contract that is widely
used in decentralized finance (DeFi) [8], [47]. We show that
LMPT is roughly x 2 faster than the existing MPT structure
in Ethereum clients for Uniswap smart contract for 10 million
senders in the genesis state. These results show that LMPT is
increasingly suitable for blockchain systems as the state trie
grows exponentially bigger.

In summary, the paper makes the following contributions:

o LMPT: We present a novel authenticated storage structure
called LMPT that significantly reduces the amplification
effect of read/write operations and decouples expensive
disk I/O operations from the critical transaction execution
thread.

e EVM Transaction Execution Engine with LMPTs: We
present the design, implementation, and evaluation of an
EVM transaction execution engine integrating LMPTs
that empirically enables the transaction execution engine
to process up to 3000 TPS (i.e., x 6 times compared to
traditional MPTs).

The remainder of this paper is organized as follows.
Section II presents a background review of the Ethereum
blockchain and its storage. Section III motivates the LMPT and
presents an overview of the LMPT. Section IV presents the
design of the LMPT. We evaluate the implementation of the
LMPT on real world benchmarks in Section V. In Section VI
we discuss related work. We finally conclude the paper in
Section VII.

II. BACKGROUND

In this section we describe how Ethereum uses MPT to store
the ledger state and why read/write operations on MPTs are a
performance bottleneck during transaction execution.

A. Ethereum Blockchain

Ethereum is a state machine constituted of a genesis state
and transactions that modify the state [46]. Ethereum supports
two types of accounts: user accounts and smart contract
accounts. Smart contract accounts are software objects that
manage transactions. Each account is associated with a unique
address. The state includes account information, which con-
sists of the nonce, account Ether balance, the storage root hash

Authorized licensed use limited to: The University of Toronto. Downloaded on April 23,2024 at 04:56:11 UTC from IEEE Xplore. Restrictions apply.

CHOI et al.: LMPT: A NOVEL AUTHENTICATED DATA STRUCTURE TO ELIMINATE STORAGE BOTTLENECKS

Root
Hash(A,B)
Branch
0 v | [f
mse f L0 Lelelolol €
A B
Hash(A) Hash(C,D)
C D
Hash(C) Hash(D)
v
| Leaf | | Leaf |

Fig. 1. MPT used in Ethereum. A node contains the hash of its children
nodes, preventing data tampering. A path of the trie can be travelled by one
hexadecimal at a time, shown by the branch node, until a leaf node is reached.

of the account’s storage trie, and the Ethereum Virtual Machine
(EVM) code hash if the account is a smart contract. The state
is kept in a top level state trie, where there is a mapping
between the Keccak256! hash of the account address and
the state. Users can interact with the blockchain by issuing
transactions using their user accounts. Ethereum then executes
state transition functions using the EVM. Transactions are
packed into a block that also contains the hash of the previous
block in the chain. To check whether a block is valid in a
chain, the block header stores the cryptographic hash of the
MPT root. Hence, any tampering of the block state can easily
be detected by verifying the root hash of the MPT.

B. Ethereum Storage

To efficiently store authenticated state, Ethereum uses a
modified MPT structure to compress key-value pair hashes.
The key is a 256-bit hash of the account address, which maps
to the stored account data as the value. Since light clients
in Ethereum do not have full access to all the data in the
blockchain, it is crucial to have authenticated data reads and
writes so light clients can verify the state with partial proofs
with the help of a full client that has access to all the data in
the blockchain.

In a MPT, we distinguish three types of nodes: branch,
extension, and leaf nodes. A branch node stores up to 16
pointers, one per hexadecimal, that point to either a leaf node,
extension node, or another branch node. An extension node
compresses a byte sequence that can be used to compress
nodes with a shared hash sequence and contains the pointer
to the next node in the tree. A leaf node stores the encoded
path and the value itself. Finally, the root of the tree is used
to create a hash that is dependent on all the leaf values, which
can be used by light clients to verify data originated from a
full client with access to the entire blockchain state.

Fig. 1 illustrates the MPT structure. It shows how a path can
be constructed from the root to extension and branch nodes,
down to the leaf nodes. The Ethereum block header contains

TKeccak256 is the primary hash function of the Ethereum blockchain to
compute the Keccak-256 hash of the input based on the Keccak cryptographic
primitive [13].

1335

1/0
Handler

Verifier waits on the critical path

/0
Handler
N Verifier]

[Read request I

Fig. 2. 1/O Blocking for Transaction Execution.

the Keccak256 hash of the root to allow both efficient
storage and verification of block data. From the root, there
are branch nodes for each hexadecimal that contain pointers
to the next node in the path of the trie. In addition, each
node contains a hash of its children nodes, which allows to
efficiently compare whether two trees have the same data by
checking the hash of their roots. By traversing the path down
the tree to its leaf node, we can verify the existence of a
particular account key-value in a blockchain state.

In addition, when an authenticated read query is executed
on MPT, it requires a proof that shows a valid path between
the root node and the leaf node. This path is then used to
recompute the signature independently, and verify that the
read value exists in the trie. This is imperative for data
access in light clients that do not store the entire state trie.
Authenticated reads in a standard MPT are costly due to
high read amplification as clients track down nodes in the
MPT. Since each node access requires an additional database
read, each authenticated read in Ethereum can have a read
amplification of 64, or one per hexadecimal in the 256-bit hash
of the address.

III. MOTIVATION AND OVERVIEW

We present an overview of LMPTs and how they tackle the
performance bottleneck of the MPT.

A. Observations and Motivation

We now describe an experiment using OpenEthereum, a
popular and fast open-sourced Ethereum client [5]. We use
OpenEthereum to import blocks containing transactions that
regularly access the blockchain state and use perf [6] to
profile transaction execution. We observed that as transactions
access the blockchain state more frequently, the transac-
tion processing throughput became lower. Our findings are
consistent with prior work [25]: the majority of transac-
tions execution time is spent on operations that access the
blockchain state, e.g., EVM opcodes such as SLOAD and
SSTORE.

Observation 1: The blockchain storage is the primary
performance bottleneck for transaction execution.

In particular, we observe that transaction execution threads
frequently become blocked waiting for the disk I/O operations
to finish. Fig. 2 illustrates our profiling findings. While the
verifiers wait for disk I/O operations to finish, resources
like CPU and memory are under-utilized and idle during
transaction execution.

Authorized licensed use limited to: The University of Toronto. Downloaded on April 23,2024 at 04:56:11 UTC from IEEE Xplore. Restrictions apply.

1336
func t(addr to, int a){ > —> O
bal[from] -= a; P[;'ISI(_I)S)F)IO n
) bal[to] += a; - SSTORE (_ 3
Invoke load operation in the EVM reads/writes Wait for DB to
EVM from DB fetch data
Fig. 3. A sequential thread execution for database (DB) reads in the EVM.
TABLE I
CACHE HIT RATES IN OPENETHEREUM
Cache size (MB) | Hit Rate TPS
50 0.635 1238
100 0.758 1256
500 0.862 1278
1000 0.879 1292

Fig. 3 presents an example to illustrate the root cause of
the latency-bound issue. The left part of Fig. 3 presents a
Solidity code snippet which reads an array stored in the MPT.
In Ethereum, read/write operations will be translated into
SLOAD/SSTORE EVM instructions, as shown in the middle
of Fig. 3. Because the EVM is designed to execute transactions
and EVM instructions sequentially, the transaction execution
thread has to wait for the results of SLOAD before it can
execute the next instruction. The SLOAD execution reads the
data from the MPT and is eventually amplified into multiple
key-value read operations, shown on the right of Fig. 3.

Similar latency-bound issues exist for MPT write operations
and SSTORE instructions. In particular, each Ethereum block
contains the MPT state root hash that existing clients have
to compute and verify. Thus, the transaction execution thread
will wait for all MPT write operations associated with one
block to finish before it continues to the next block. Although
the latency of the write operations only happens at the block
level, it is on the critical path for the performance because it
cannot be mitigated by memory cache in the Ethereum client.

Observation 2: The primary performance bottleneck of
MPT: transaction execution thread waits for expensive disk
I/O operations and becomes latency bound.

Table I presents our experimental findings on the
OpenEthereum client with different memory cache sizes
for the MPT database. We import blocks containing random
simple payment transactions and report the transaction
throughput under different cache sizes. In Table I, we observe
that increasing the memory cache size in OpenEthereum had
an immediate effect on the cache hit rate, i.e. around 25%.
However, the cache sizes had no significant impact on overall
performance, and throughput increased by no more than 5%.
These results show that simply enlarging the memory cache
of MPT or naively allocating more memory to the process
may not improve the transaction execution sufficiently.

B. LMPT Overview

To reduce I/O amplification and separate the critical path
of blocking threads, we propose a new data structure, namely
Layered Merkle Patricia Trie (LMPT), to store authenticated
Ethereum state. The LMPT consists of three distinct MPTs
that act as “caches” for any authenticated access: delta,

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

ReadIState

1. Delta MPT

3. Snapshot MPT
(Authenticated)

v
k1 vl
k2 2
-| |- 5w

3. Flat KV Store
(Simple)
Disk

2. Intermediate MPT

Memory

Fig. 4. Authenticated and simple state reads in LMPT.

WriteI State

a
do !
3. Snapshot MPT

(Merge with Intermediate
MPT in background)

2. Intermediate MPT

Background Thread

Memory

Fig. 5. Writing state in LMPT. Writes are periodically flushed from
intermediate trie to snapshot trie using background threads.

intermediate, and Snapshot MPTs. For every read access
to the state tree, the request first searches the Delta MPT.
If the requested data is not found, then the Intermediate
MPT is searched, then finally, the Snapshot MPT is checked.
This hierarchical cache structure reduces read amplification
on the key path (especially for hot data) and reduces very
costly accesses to disk. Fig. 4 shows how authenticated and
simple reads access data in the LMPT. The smaller delta and
intermediate tries are stored in memory to allow for faster
access to hot data, while the larger snapshot trie and the flat
key-value store are stored in disk. For authenticated reads that
require Merkle proofs, the snapshot trie provides information
about the account. Simple reads requested from the full node
itself can be read from a flat key-value store, which reduces
any read amplification for accessing a value.

For a write, instead of immediately flushing changes to
disk, the Delta MPT is updated. Caching writes allow to
have a consistent view of the entire system at the small
cost of storing and updating the Delta MPT in memory. To
keep the MPTs small, the changes are flushed at periodic
checkpoints, where the Delta MPT changes are merged to
the Intermediate MPT and the Intermediate MPT is merged
into the Snapshot MPT. Fig. 5 shows how the Delta MPT is
stored inside the memory while a background process merges
any larger changes between the intermediate and Snapshot
MPT. As a result, the writes are periodically batched and
completed independently of the critical path of transaction
verification. The disentanglement of the two memory tries:
Delta and Intermediate MPTs, allows the slow process of
flushing changes from the Intermediate MPT in memory to the

Authorized licensed use limited to: The University of Toronto. Downloaded on April 23,2024 at 04:56:11 UTC from IEEE Xplore. Restrictions apply.

CHOI et al.: LMPT: A NOVEL AUTHENTICATED DATA STRUCTURE TO ELIMINATE STORAGE BOTTLENECKS

struct Trie {
root:
kv:

}

struct LMPT {

uint256,
Map

delta, interm: Trie, // In memory
snapshot: Trie, // In disk
flat: Map // In disk

}
Fig. 6. LMPT Data Structure.

T := LMPT ()
fn write_LMPT (k,v) {
root := T.delta.put(T.delta.root,k,v)
T.delta.root := root
}
fn read_LMPT (k) —-> <v,p> {
<v,p1> := T.delta.get (delta.root, k)
if v is present
return <v,p1>
<v,p2> := T.interm.get (T.interm.root, k)
if v is present
return <v,p1 + p2>
if auth_proof
<v,p3> := T.snapshot.get (T.snapshot.root, k)
return <v,p1 +p2 +p3>
else
v := flat.get (k)
return <v,e>

}

Fig. 7. LMPT read and write operations.

Snapshot MPT in disk to occur concurrently while transactions
can fetch hot data from the Delta MPT in memory.

IV. LMPT DESIGN

In this section, we outline the design of LMPTs and
describe the fundamental improvements they bring to transac-
tion throughput in the storage layer for blockchain clients.

A. Definitions and Data Structures

In Fig. 6, we define the data structures used to architect the
LMPT. We first define the data type frie, which consists of
a uint256 root hash and a key-value map as an abstraction
for storing authenticated data. The LMPT data structure is
comprised of four components: the delta, intermediate, and
snapshot tries, and the flat key-value store map. The delta and
intermediate trees are stored in memory and contain frequently
accessed state. The snapshot tree and flat key-value map store
the entire blockchain state on disk, and return the values for
an authenticated and non-authenticated access, respectively.

B. Read and Write Operations

In Fig. 7, we present the pseudocode for LMPT read and
write operations. For a write, the value is always updated on
the delta trie, which is kept in memory so that hot data can be
queried quickly. For a read, we first query the delta trie, and
if a value does exist in the delta trie, we can verify existence
for that value and simply return the value and path. If the
value does not exist, then we need to return proof by showing
that the two adjacent paths, i.e., a path that is immediately
greater and immediately less than the value, exist in the tree
instead. Using this returned proof of adjacent paths, we query

1337

fn merge_compute (T) -> (root’, flat’) {
flat’ := T.flat
root’ := T.snapshot.root

for <k, v> in T.interm.kv(T.interm.root)

root’ := T.snapshot.append(root’, k, v)
flat’ := flat’.set (k, v)
return (root/, flat’)
}
fn merge_update (T, root’/, flat’) {
T.flat := flat’
T.snapshot.root := root’
T.interm := T.delta
T.interm.root := T.delta.root
T.delta := Trie()
T.delta.root := None

Fig. 8. LMPT merge operations.

the intermediate trie to check for the value. If the intermediate
trie contains the corresponding value for the key, we return
the resulting data and the combined proof from the delta and
intermediate tries. Finally, if the key is not present in the delta
or intermediate trie, then it is queried from disk. If the client
requires an authenticated read, then it must query the snapshot
trie on disk for the value. If the client can trust the authenticity
of the data, e.g., reading state from its own database, then
the client can query the flat store map to eliminate any read
amplification. By querying the disk last, we can delay costly
reads from disk and reduce incurring large read amplification
on bigger tries by having smaller, intermediary authenticated
data structures in memory.

C. Trie Merge Operations

In Fig. 8, we give the two step merge process of the different
trie structures behind the LMPT. The merge_compute
function updates the snapshot trie and flat store map on
disk. At predefined intervals, merge_compute is called to
update and append all the changes from the intermediate trie
to its snapshot trie and flat store map, and returns the new
snapshot root and key-value map. This function allows to
batch writes to disk at once and allows the Snapshot MPT on
disk to be updated efficiently without having to update every
single interior node on the MPT, which greatly reduces write
amplification. In addition, the merging can be parallelized and
distributed to multiple threads, which prevents blocking the
main execution thread on the critical path for I/O accesses.

The merge_update function defines how the tries in
the LMPT are updated. merge_update accepts the new
snapshot root and flat store map that were returned by the
function merge_compute. Then, the intermediate trie is set
to the smaller delta trie, and the delta trie is flushed and
initialized by a new empty trie.

Finally, Fig. 9 shows a procedure that merges new data
using a background thread so it does not block the critical path
for the client. While a new block is being processed by the
node, the incoming transactions in the block are written into
the delta and intermediate tries of the LMPT. After each block
is processed, a block counter is incremented as the tries in
memory are filled with new incoming data. When the counter
reaches a particular threshold, defined as the merge period
interval, the process waits until all the remaining transactions

Authorized licensed use limited to: The University of Toronto. Downloaded on April 23,2024 at 04:56:11 UTC from IEEE Xplore. Restrictions apply.

1338

block_cnt := 0
T := LMPT (genesis_state)
while Block is processing
for transaction in Block
T.update_trie(transaction)
block_cnt += 1
if block_cnt % merge_interval == 0
Wait for last spawned thread to end
merge_update (T, root’/, flat’)
spawn_thread (root’, flat’=merge_compute (T))

Fig. 9. Flushing updates to disk on a background thread.

are processed and threads that are merging tries finish. Then,
the process calls the merge_update function to update the
tries and flat store map computed by merge_compute. This
two parts process allows data to be batched and flushed from
memory to disk by a background thread so the main execution
thread continues verification normally and only accesses the
disk for the merge period intervals. After the tries are merged,
a new background thread is spawned so that the incoming
data can be integrated into the snapshot trie and flat store and
flushed to disk in the next merge period.

D. Integration With Blockchain Clients

The LMPT can replace the standard MPT in Ethereum-like
systems with the following modifications:

1) State Encoding: Ethereum uses a 32-byte root hash of
the MPT representing the resulting state of each exe-
cuted block. LMPT consists of three tries, but we can use
one-way cryptographic hash functions like Keccak256
to combine the root hashes of the tries to generate a
single 32-byte root hash representing the state.

2) Proof Verification Process: The authentication proof
contains the proof combination of multiple tries, if the
value is not found in the delta trie. Thus, we need to
update the proof verification process accordingly so that
the proof combination from the delta, intermediate, and
snapshot tries is accepted by the verifier.

Remark 1 (Client Crash Recovery): When an LMPT-based
client node crashes without updates in memory being persisted
on the disk this may result in the node being out of sync
with the rest of the Ethereum network. However, the recovery
mechanism of the LMPT-based node is the same as that of an
MPT-based client where the client will start from the consistent
state it has on the disk and connect with peers in the network
to sync and receive the missing updates.

V. EMPIRICAL EVALUATION

In this section, we evaluate the transaction throughput on
Ethereum clients with and without LMPT using different
workloads based on simple payment transfers, ERC20 smart
contracts, and Uniswap smart contracts.

A. Implementation

To compare LMPT‘s storage performance with exist-
ing Ethereum MPT implementations, we modify the
OpenEthereum client to implement LMPT instead of the
standard Ethereum MPT. The OpenEthereum client is imple-
mented in Rust programming language and is one of the fastest

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

Ethereum clients available [2]. In particular, we modify the
existing storage engine of OpenEthereum to integrate the delta
trie, intermediate trie, snapshot trie, and flat store instead of
the single MPT structure. In addition, we alter the verification
engine of OpenEthereum so that the LMPT merging process
from Section IV is integrated into the client.

Memory Overhead: LMPT requires additional memory over
standard MPT to store Delta and Intermediate MPTs. For
instance, if Delta and Intermediate MPTs are configured to
each hold the data of 2 million transactions and assuming
that the average transaction size is 250 bytes, then LMPT
would require 1GB in memory which is reasonable. This is
the default configuration we use in our experiments, and these
numbers are configurable.

B. Experimental Setup

The first two experiments are run on an AWS EC2 i3.xlarge
instance with 4 vCPU, 30GB memory, and 1TB SSD storage
and the last experiment is run on an AWS EC2 c6a.8xlarge
instance with 32 vCPU and 64GB memory, and 1TB SDD
storage. We run our LMPT implementation and compare
it with the standard OpenEthereum v3.1.0, available on
Github [5]. In order to purely compare storage performance,
we turn off the consensus engine and run the experiments
in a private network containing a single node, so the blocks
can be instantly mined and network effects will be neg-
ligible. We further collect a sample trace of 500,000 real
transactions from the Ethereum network for the first two
experiments of simple payments and ERC20 transfers. We
replicate the transaction behavior and pack blocks to mimic
real world conditions. The blocks are created to reflect real
gas limits, which is 150 transactions per block for simple
payments and 20 transactions per block for ERC20. For
ERC20 workloads, we sample transfer transactions for the
Tether token, which is one of the most popular ERC20 tokens
on Ethereum [1]. We monitor memory usage for both the
LMPT implementation and standard OpenEthereum to ensure
that the average memory usage for both experiments are
relatively equal.

C. Simple Payments

Ethereum Traces Benchmark: We re-create blocks with
the transaction traces collected from real Ethereum simple
payment transactions. This allows us to import the blocks
and measure the true performance of the authenticated storage
structures. Since real Ethereum simple payments require their
respective private keys of the senders, we create a one-to-one
mapping between each public address and a generated public-
private key pair. This enables one to send and sign transactions
using the generated private keys to keep the integrity of the
real-life workloads on the main network.

Random Senders Traces Benchmark: In addition, we create
another benchmark where we send simple payment transac-
tions from a set of random senders addresses. We define
each random sender with a high initial ETH balance in the
genesis block, and send transactions with an evenly distributed
load. Although the number of accounts in the initial states

Authorized licensed use limited to: The University of Toronto. Downloaded on April 23,2024 at 04:56:11 UTC from IEEE Xplore. Restrictions apply.

CHOI et al.: LMPT: A NOVEL AUTHENTICATED DATA STRUCTURE TO ELIMINATE STORAGE BOTTLENECKS

08 LMPT [0 OpenEthereum ‘
3.000 |- 2,837 |
’ 2,424
1,996 2,139
£ 2,000 | I
=
1,000 |- ‘”7 611
514
0
lOM
Accounts n 1n1t1a1 state
| ‘ 00LMPT[0 OpenEthereum ‘ |
3,086
3,000 2.487 I
2,164 2,062
£ 2,000 | 1,728 I
F
1,000 + 870 (>27
540
0
lOM

Accounts in 1n1t1al state

Fig. 10. TPS for LMPT-based OpenEthereum and the standard
OpenEthereum for simple payment transactions. The top graph corresponds
to the Ethereum traces benchmark and the bottom graph corresponds to the
random senders traces benchmark.

differs, every unique sender is guaranteed to send at least
one transaction to a random receiver. Similar to the Ethereum
traces benchmark, we send a total of 500,000 transactions from
the random senders pool.

Initial State: In the experiments, we prepare different initial
states with an increasing number of accounts in the genesis
block and measure the throughput in transactions per second
for importing blocks on the client. This is because in our initial
tests, the number of accounts in the genesis state does have
a significant impact on performance. Contrarily, the number
of transactions has little effect on the overall TPS, aside
from storage warm up times (cache loading) for the initial
transactions. Even as transactions increase, we do not observe
significant difference in transaction import times. We track
workloads with large numbers of senders and receivers, which
would not fit entirely in the program memory and require 1I/O
accesses from storage.

Fig. 10 shows the size of initial state versus performance for
LMPT-based OpenEthereum and the standard OpenEthereum
for simple payment transactions for the two benchmarks. The
X-axis corresponds to the number of accounts in the genesis
state (in millions) and the Y-axis corresponds to the throughput
(in TPS) when the blocks are imported from disk. Our results
show that the standard OpenEthereum’s MPT model handles
a relatively small initial state fairly well, and can reach up
to 2000 TPS for 1 million accounts for both the Ethereum
and random sender traces benchmarks. However, it drastically
slows down to about 1000 TPS in importing blocks when the
initial state is 3 million accounts. At 10 million accounts in the
initial state, the standard OpenEthereum starts to significantly
slow down on our 30GB memory machine, and for more than

1339

10 million accounts, it fails to make much progress on the
machine.

On the other hand, the LMPT-based OpenEthereum can
achieve around 3000 TPS for 1 million accounts, a 50%
improvement over the standard OpenEthereum. It is also able
to sustain much higher performance for a large number of
senders, and gets up to 2000 TPS for 10 million senders.
For both benchmarks, the LMPT outperforms the standard
client by a factor of 6 for a large initial state. After the initial
state reaches around 20 million accounts, we finally see a
noticeable drop and saturation in performance for the LMPT-
based OpenEthereum, which is twice the threshold reached by
the standard OpenEthereum.

The LMPT structure allows for higher sustained
performance because as the state trie gets bigger, LMPT can
still cache hot data and account information into its delta and
intermediate tries. In addition, since merging the snapshot trie
on disk is done in parallel to the main execution thread, there
is minimal blocking when state is imported. Contrarily, the
standard OpenEthereum needs to execute increasingly more
state reads from disk as the state grows larger, which slows it
down drastically.

D. ERC20 Transfers

Similar to the simple payment traces, we sample transac-
tions for the Tether token to generate real life workloads
for the ERC20 contract. We deploy the ERC20 contract on a
private network, initialize the contract address, synthesize a set
of accounts, and fund them with some initial tokens. Then, we
use our generated senders to call the transfer function and send
the tokens according to our sampled transactions trace. For
the random senders benchmark, we initialize senders addresses
with enough tokens and call the transfer function with an even
distribution.

Fig. 11 illustrates the size of initial state versus
performance for LMPT-based OpenEthereum and the standard
OpenEthereum for ERC20 tokens transfers transactions for the
two benchmarks. The performance on ERC20 contracts are
noticeably lower because they require more computation and
gas. However, the results are similar to the simple payments
as the standard OpenEthereum reaches saturation much more
quickly as the state grows in size. For 1 million accounts,
LMPT-based OpenEthereum had around 2000 TPS and could
sustain that performance for 3-5 millions accounts. On the
other hand, the standard OpenEthereum had around 1600
TPS for 1 million accounts and performance quickly dropped
as the size of the initial state increases. For 10 million
accounts, LMPT-based OpenEthereum outperforms standard
OpenEthereum by a factor 4. This shows that LMPT is able
to maintain better throughput as the initial state grows. These
results also suggest that LMPT is an effective solution for
blockchains that support smart contracts and require more
complex state reads and writes.

E. Uniswap Exchange

In this experiment, we compare LMPT against
OpenEthereum MPT using a widely used smart contract that

Authorized licensed use limited to: The University of Toronto. Downloaded on April 23,2024 at 04:56:11 UTC from IEEE Xplore. Restrictions apply.

1340

08 LMPT [0 OpenEthereum ‘
| 1,862) |
2,000 S92 s 1,830 1,809
= 1,330
A 986
= 1,000 | 697 =
395
O I I I \i:l
M 3M SM 10M
Accounts in initial state
00LMPT[0 OpenEthereum ‘ |
9000 | 1261 1,894 1,838 h
1,438 1,458
n
&
= 1,000 | 769 =
546
il =8 E
O I I I \:I
M 3M M 10M
Accounts in initial state
Fig. 11. TPS for LMPT-based OpenEthereum and the standard

OpenEthereum for ERC20 transfer transactions. The top graph corresponds
to the Ethereum traces benchmark and the bottom graph corresponds to the
random senders traces benchmark.

requires more state reads and writes than simple payment
and ERC20 transfer. In particular, we use the Uniswap
smart contract, a very popular decentralized finance (DeFi)
protocol [8], [47]. Uniswap is an exchange protocol that also
offers flash loan services. Uniswap exchange protocol consists
of liquidity providers and traders. A liquidity provider supplies
a pool of two ERC20 tokens that can be exchanged, i.e.,
creating an exchange market between the two ERC20 tokens.
A trader exchanges one type of ERC20 token to the pool and
receive the other ERC20 token out of the pool. The exchange
rate between the ERC20 tokens in the pool is determined using
an automated liquidity protocol by computing the relative
number of the two tokens the pool has taking to account a
small percent as reward for the liquidity pool provider. For
instance, in a given liquidity pool with an amount X of a
token A and an amount Y of a token B, the output amount o
of token B a user receives for selling an input amount i of
token A is given as follows:

_ Y1)
X+ (1-f)

The constant f represents the reward earned by the lig-
uidity provider for the exchange. In the Uniswap smart
contract implementation, we can distinguish two main
exchange functions swapExactTokensForTokens and
swapTokensForExactTokens. swapExactTokensForTo-
kens sells a specific amount of tokens fixed by the caller
for another (the outputted amount is determined using the
Uniswap exchange formula). On the other hand, swapTokens-
ForExactTokens buys a specific amount of tokens fixed by the
caller.

(D

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

08LMPT 0 OpenEthereum

27000 [1,702 1,696 N

1,548
1%2)
[1,096 1,019
= 1,000 | H
0

904 808 |

Accounts in 1n1t1al state

Fig. 12. TPS for LMPT-based OpenEthereum and the standard
OpenEthereum for Uniswap swapExactTokensForTokens and swapTokens-
ForExactTokens transactions from a set of random senders.

In this experiment, we send a total of 500,000 transactions
from the random senders addresses pool that uniformly call
one of the two functions swapExactTokensForTokens and
swapTokensForExactTokens. We initialize each random sender
with a sufficient ETH and ERC20 tokens balances. Similar to
before, we prepare different initial states with an increasing
number of accounts in the genesis block.

Fig. 12 shows the size of initial state versus performance for
LMPT-based OpenEthereum and the standard OpenEthereum
for Uniswap exchange transactions initiated by random senders
addresses. The performance for Uniswap transactions are
lower versus ERC20 transactions because they require more
computation and storage accesses. The results of the exper-
iment are similar to the results of the simple payment and
ERC20 transfer as the standard OpenEthereum reaches sat-
uration much more quickly as the state grows in size. In
the Uniswap experiment, we use a machine with superior
computing and memory capabilities. Thus, both LMPT-based
OpenEthereum and standard OpenEthereum reach saturation
much slower in Fig. 12 compared to Fig. 11 even though
Uniswap requires more computation and storage accesses than
ERC20. For instance, for 3 millions accounts in standard
OpenEthereum the TPS for ERC20 is smaller than the TPS
for Uniswap, this is because standard OpenEthereum reaches
saturation in the inferior machine. On the other hand, for 3
millions accounts in LMPT-based OpenEthereum the TPS for
ERC20 is bigger than the TPS for Uniswap while the Uniswap
is run on a more superior machine. Eventually, for 10 millions
accounts, LMPT-based OpenEthereum reaches saturation in
the inferior machine, and the TPS for ERC20 is smaller than
the TPS for Uniswap that is run on a superior machine. Notice
that for 10 million accounts, LMPT-based OpenEthereum
outperforms standard OpenEthereum by almost a factor 2 for
Uniswap transactions. The results of this experiment also show
that LMPT is an effective solution for blockchains that support
the advanced DeFi smart contracts that does more complex
computation and storage state reads and writes.

The reduced speed-up factor for Uniswap transactions of
LMPT compared to simple payment and ERC20 transfer
transactions is because a Uniswap transaction involves com-
puting the output amount based on the input amount using
Equation (1). On the other hand, a simple payment or an

Authorized licensed use limited to: The University of Toronto. Downloaded on April 23,2024 at 04:56:11 UTC from IEEE Xplore. Restrictions apply.

CHOI et al.: LMPT: A NOVEL AUTHENTICATED DATA STRUCTURE TO ELIMINATE STORAGE BOTTLENECKS

ERC20 transfer transaction does not involve such computation.
Thus, there will be no speed-up in executing the corresponding
arithmetic operations to carry this computation between an
MPT-based client and an LMPT-based client since they have
the same execution engine. The speed-up will be in accessing
the data in storage where the two clients differ.

The experiments show for a large initial blockchain state
that the LMPT-based client outperforms the MPT-based client
by a factor of 6 for simple payment transfer, 8 for ERC20
transfer, 1.9 for Uniswap tokens swap transactions. These
speedups are thanks to the partial elimination of the authen-
ticated read and write amplifications that require additional
data accesses. In particular, an authenticated read/write in
MPT can have a read/write amplification of 64 in the worst-
case scenario,i.e., one per hexadecimal in the 256-bit hash
of the address, i.e., 4-bit x 64 = 256-bit. The read/write
amplification converges towards the worst case when the initial
blockchain state is large, i.e., the trie is large implying more
internal nodes between the root node and the target node. The
following mechanisms adopted in LMPT helped reduce the
above worst-case amplification:

o For hot data, authenticated reads by a light node can

retrieve data from memory rather than from disk.

o For simple reads by a full node the key-value flat map
eliminates the read amplifications, i.e., a read no longer
needs to access all inner nodes in the trie between the
root node and the node storing data.

e For writes, updates are written to the delta trie in the
memory and propagated in the background to the disk.
Thus, avoiding the execution being delayed while the
MPT on the disk updates all internal nodes which may
require an additional 64 disk writes in the worst case.

VI. RELATED WORK

Layered storage hierarchy has been studied extensively
in the context of storage systems, distributed systems, and
databases to ensure efficient data accesses for data intensive
applications [17], [20], [21], [22], [23], [30], [31], [34], [39],
[48]. However, layered storage design based on MPTs was not
studied in the context of global state storage in blockchain
platforms. In particular, the problem LMPTs are solving are
for the main blockchain networks, i.e., Layer-1 solutions.
As a result, we discuss other recent Layer-1 solutions that
improve blockchain throughput here.

Distributed MPTs: A number of works [36], [38] study
distributed MPTs to improve storage performance. In [38], the
authors introduce mLSM, which splits the storage layer into
multiple MPTs. This allows to reduce the authenticated read
and write amplification. By decoupling the verifier with the
lookup, mLSM reduced the I/O workload between reads and
writes. However, increasing the number of levels in the MPT
structure introduces a separate write amplification between
layers and performance considerations need to be made when
doing compaction between different tries.

Ponnapalli et al. [36] introduce Rainblock, which
uses distributed sharding for the MPTs to improve storage
performance in Ethereum based clients [36]. The underlying

1341

architecture proposes to decouple nodes into clients, miners,
and storage nodes. This allows the storage nodes to use a
distributed and sharded MPT in order to provide witness
proofs to verify blocks based on the Merkle root. However,
Rainblock requires major changes to existing Ethereum
clients, as there is no such distinction between clients, miners
and storage nodes. On the other hand, our LMPT design does
not require major architectural changes and can be applied
directly to existing nodes in Ethereum with few modifications,
as we discussed in Section IV. Li et al. [26] evaluated the
TPS performance of both LMPT and Rainblock under
a large block size configuration of 20,000 transactions per
block (in our experiments we use more realistic block
sizes that reflect real gas limits) for simple payments and
ERC20 transfers. Their results (Figure 2 in [26]) show that
Rainblock achieves a small TPS increase of 10% over
LMPT. Li et al. [26] proposes LVMT a new blockchain storage
that instead of MPT it uses a new cryptographic vector com-
mitment scheme called authenticated multipoint evaluation
tree (AMT) that can update commitment (i.e., the hash root)
in constant time instead of O(logn) in MPT. An LVMT-based
client can achieve a much better TPS than both Rainblock
and LMPT [26]. However, similar to Rainblock, LVMT
requires major changes to existing Ethereum clients, replacing
the whole MPT storage data structures by AMT-based data
structures. On the other hand, our LMPT design builds on the
existing MPT storage data structures.

Consensus Protocols: There are many works on improving
transaction throughput in blockchain systems by improving
the underlying consensus protocols with different tradeoffs,
e.g., [11], [14], [19], [27]. Although improving consensus
protocols is an important concern, the transaction execution
will still be a bottleneck by blocking I/O calls made by clients.
As the blockchain state increasingly grows, the storage bot-
tleneck will be the main problem faced by blockchain clients
to overcome for scaling transaction throughput. Our proposed
LMPT can be implemented with any consensus mechanism,
and it allows further improvements in performance.

Sharding in Blockchains: There are a number of works
on improving throughput in blockchain platforms through
sharding transaction execution and sharding the blockchain
state [10], [16], [28], [35]. The Ethereum community has also
been receptive to sharding consensus solutions as a part of the
ETH?2 protocol [9]. Sharding proposes validator nodes to split
up into smaller committees and validate a portion of the entire
blockchain state. By separating groups of validator nodes, the
nodes can also validate blocks with fewer resources, as it only
needs to keep track of a small portion of the state and can allow
more validators to participate on a limited set of computing
power. However, sharding also introduces the problem of
malicious nodes gaining easier access to attack the blockchain.
This is because the state is more vulnerable to fragmentation,
and sharding requires stricter network guarantees and fewer
overall validators in each shard committee [37], [41]. In addi-
tion, sharding often requires heavy cross-shard communication
and more networking overhead as nodes need to coordinate
transactions with other nodes that have different portions of
the state [43]. All in all, sharding is orthogonal to the problem

Authorized licensed use limited to: The University of Toronto. Downloaded on April 23,2024 at 04:56:11 UTC from IEEE Xplore. Restrictions apply.

1342

LMPTs are solving by enabling a more performant storage
structure.

VII. CONCLUSION

The LMPT is a novel storage structure that can signifi-
cantly improve transaction processing in the storage layer of
blockchain systems. This paper shows that it is able to be
easily integrated to existing blockchain clients and can be
used to improve throughput, in addition to novel consensus
mechanisms. Ultimately, our results show that the LMPT is
able to parallelize execution in the critical path and is effective
for improving import performance in block catchup, especially
for large states.

LMPT is integrated in production in the Conflux proto-
col [27], [33], an EVM-based high performance blockchain,
replacing the traditional MPT.

There are several interesting avenues for future work for
improving the efficiency of blockchain platforms. In partic-
ular, new vector commitment schemes such as authenticated
multipoint evaluation Trees (AMT) [44] and Hyperproofs [42]
permit to achieve faster authenticated storage reads and
writes than MPT. Furthermore, Hyperproofs provides an effi-
cient proof aggregation mechanism that enables to build a
blockchain protocol with states sharding. Thus, an interesting
direct future work is to investigate how to extend the layered
LMPT design to AMT and Hyperproofs.

REFERENCES

[1] “ERC-20 Top tokens.” etherscan. [Online]. Available: https://etherscan.
io/tokens

[2] “Ethereum node and clients.” ethereum. [Online]. Available: https:/
ethereum.org/en/developers/docs/nodes-and-clients/

[3] “Etherum white paper,” Ethereum, Zug, Switzerland, White Paper.
[Online]. Available: https://github.com/ethereum/wiki/wiki/White-Paper

[4] “Go ethereum.” geth. [Online]. Available: https://geth.ethereum.org/.

[5] “OpenEthereum.” github. [Online]. Available: https://github.com/
openethereum/openethereum

[6] “Perf tools.” github. [Online]. Available: https://github.com/torvalds/
linux/tree/master/tools/perf

[7] “Top 20 gas consuming smart contracts.” theblockcrypto. [Online].
Available: https://www.theblockcrypto.com/data/on-chain-metrics/
ethereum

[8] “Uniswap protocol.” uniswap. [Online]. Available: https://uniswap.org/

[9] “Validated, staking on ETH2: Sharding consensus.” ethereum. [Online].
Available: https://blog.ethereum.org/2020/03/27/sharding-consensus/

[10] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis,
“Chainspace: A sharded smart contracts platform,” in Proc. 25th Annu.
Netw. Distrib. Syst. Secur. Symp. (NDSS), 2018, pp. 1-16.

[11] E. Androulaki et al., “Hyperledger fabric: A distributed operating system
for permissioned blockchains,” in Proc. 13th EuroSys. Conf., New York,
NY, USA, 2018, pp. 1-15.

[12] V. Bagaria, S. Kannan, D. Tse, G. Fanti, and P. Viswanath, “Prism:
Deconstructing the blockchain to approach physical limits,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., 2019, pp. 585-602.

[13] G. Bertoni, J. Daemen, M. Peeters, and G. V. Accche, “The keccak
reference, version 3.0.” keccak. 2011. [Online]. Available: https://keccak.
team/files/Keccak-reference-3.0.pdf

[14] V. Buterin, D. Reijsbergen, S. Leonardos, and G. Piliouras, “Incentives
in Ethereum’s hybrid casper protocol,” Int. J. Netw. Manag., vol. 30,
no. 5, p. €2098, Sep./Oct. 2020.

[15] L. Cocco, A. Pinna, and M. Marchesi, “Banking on blockchain: Costs
savings thanks to the blockchain technology,” Future Internet, vol. 9,
no. 3, p. 25, Jun. 2017.

[16] H. Dang, T. T. Anh Dinh, D. Loghin, E. Chang, Q. Lin, and B. C. Ooi,
“Towards scaling blockchain systems via sharding,” in Proc. Int. Conf.
Manage. Data (SIGMOD), New York, NY, USA, 2019, pp. 123-140.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

[17] G. DeCandia et al., “Dynamo: Amazon’s highly available key-value
store,” in Proc. 21st ACM Symp. Oper. Syst. (SOSP), Stevenson,
Washington, USA, 2007, pp. 205-220.

[18] F. Vogelsteller and V. Buterin. “eip-20: ERC-20 token stan-
dard; ethereum improvement proposals.” 2015. [Online]. Available:
https://eips.ethereum.org/EIPS/eip-20

[19] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling Byzantine agreements for cryptocurrencies,” in Proc. 26th Symp.
Oper. Syst. Princ., 2017, pp. 51-68.

[20] J. L. Hennessy and D. A. Patterson, Computer Architecture-A
Quantitative Approach, S5th ed. Waltham, MA, USA: Morgan Kaufmann,
2012.

[21] S. Jiang, X. Ding, F. Chen, E. Tan, and X. Zhang, “DULO: An effective
buffer cache management scheme to exploit both temporal and spatial
localities,” in Proc. 4th USENIX Conf. File Stor. Technol., San Francisco,
CA, USA, 2005, pp. 101-114.

[22] H. Kim, S. Seshadri, C. L. Dickey, and L. Chiu, “Evaluating phase
change memory for enterprise storage systems: A study of caching
and tiering approaches,” ACM Trans. Stor., vol. 10, no. 4, pp. 1-21,
Oct. 2014.

[23] J. Kim, H. Roh, and S. Park, “Selective I/O bypass and load balancing
method for write-through SSD caching in big data analytics,” IEEE
Trans. Comput., vol. 67, no. 4, pp. 589-595, Apr. 2018.

[24] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and
B. Ford, “Enhancing bitcoin security and performance with strong
consistency via collective signing,” in Proc. 25th USENIX Conf. Secur.
Symp., 2016, pp. 279-296.

[25] A. Li, J. A. Choi, and F. Long, “Securing smart contract with runtime
validation,” in Proc. 41st ACM SIGPLAN Conf. Program. Lang. Des.
Implement., New York, NY, USA, 2020, pp. 438-453.

[26] C.Li, S. M. Beillahi, G. Yang, M. Wu, W. Xu, and F. Long, “LVMT: An
efficient authenticated storage for blockchain,” in Proc. 17th USENIX
Symp. Oper. Syst. Des. Implement. (OSDI), Boston, MA, USA, 2023,
pp. 135-153.

[27] C. Li et al., “A decentralized blockchain with high throughput and fast
confirmation,” in Proc. USENIX Annu. Tech. Conf., 2020, pp. 515-528.

[28] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in Proc. 2016 ACM
SIGSAC Conf. Comput. Commun. Secur. (CCS), New York, NY, USA,
2016, pp. 17-30.

[29] T. McGhin, K. Choo, C. Z. Liu, and D. He, “Blockchain in healthcare
applications: Research challenges and opportunities,” J. Netw. Comput.
Appl., vol. 135, pp. 6275, Jun. 2019.

[30] N. Megiddo and D. S. Modha, “ARC: A self-tuning, low overhead
replacement cache,” in Proc. 2nd USENIX Conf. File Stor. Technol.,
2003, pp. 115-130.

[31] M. P. Mesnier, F. Chen, T. Luo, and J. B. Akers, “Differentiated storage
services,” in Proc. 23rd ACM Symp. Operating Syst. Princ. (SOSP),
2011, pp. 57-70.

[32] S. Nakamoto. “Bitcoin: A peer-to-peer electronic cash system.” [Online].
Available: http://bitcoin.org/bitcoin.pdf

[33] “Conflux-rust.”” confluxnetwork. 2023.
developer.confluxnetwork.org/

[34] E.J. O’Neil, P. E. O’Neil, and G. Weikum, “The LRU-K page replace-
ment algorithm for database disk buffering,” in Proc. ACM SIGMOD
Int. Conf. Manag. Data, Washington, DC, USA, 1993, pp. 297-306.

[35] G. Pirlea, A. Kumar, and I. Sergey, “Practical smart contract shard-
ing with ownership and commutativity analysis,” in Proc. 42nd
ACM SIGPLAN Int. Conf. Program. Lang. Des. Implement., 2021,
pp. 1327-1341.

[36] S. Ponnapalli et al., “Rainblock: Faster transaction processing in public
blockchains,” in Proc. USENIX Annu. Tech. Conf. (USENIX), 2021,
pp. 333-347.

[37] T. Rajab, M. H. Manshaei, M. Dakhilalian, M. Jadliwala, and
M. A. Rahman, “On the feasibility of Sybil attacks in shard-based
permissionless blockchains,” 2020, arXiv:1710.09437.

[38] P. Raju et al., “mLSM: Making authenticated storage faster in
Ethereum,” in Proc. 10th USENIX Workshop Hot Topics Stor. File Syst.
(HotStorage’18), Boston, MA, USA, 2018, pp. 1-6.

[39] B. Reed and D. D. E. Long, “Analysis of caching algorithms for
distributed file systems,” ACM SIGOPS Oper. Syst. Rev., vol. 30, no. 3,
pp. 12-21, Jul. 1996.

[40] S. Rouhani and R. Deters, “Performance analysis of ethereum transac-
tions in private blockchain,” in Proc. 8th IEEE Int. Conf. Softw. Eng.
Service Sci. (ICSESS), 2017, pp. 70-74.

[Online]. Available: https://

Authorized licensed use limited to: The University of Toronto. Downloaded on April 23,2024 at 04:56:11 UTC from IEEE Xplore. Restrictions apply.

CHOI et al.: LMPT: A NOVEL AUTHENTICATED DATA STRUCTURE TO ELIMINATE STORAGE BOTTLENECKS

[41] A. Sonnino, S. Bano, M. Al-Bassam, and G. Danezis, “Replay attacks
and defenses against cross-shard consensus in sharded distributed
ledgers,” in Proc. IEEE Eur. Symp. Security Privacy (EuroS P), 2020,
pp. 294-308.

[42] S. Srinivasan, A. Chepurnoy, C. Papamanthou, A. Tomescu, and
Y. Zhang, “Hyperproofs: Aggregating and maintaining proofs in vector
commitments,” Cryptol. ePrint Arch., IACR, Bellevue, WA, USA,
Rep. 2021/599, 2021.

[43] Y. Tao, B. Li, J. Jiang, H. C. Ng, C. Wang, and B. Li, “On sharding
open blockchains with smart contracts,” in Proc. IEEE 36th Int. Conf.
Data Eng. (ICDE), 2020, pp. 1357-1368.

[44] A. Tomescu et al., “Towards scalable threshold cryptosystems,” in Proc.
IEEE Symp. Security Privacy, 2020, pp. 877-893.

[45] Y. Wang, J. H. Han, and P. Beynon-Davies, “Understanding blockchain
technology for future supply chains: A systematic literature review and
research agenda,” Supply Chain Manag. Int. J., vol. 24, no. 1, pp. 62-84,
Dec. 2018.

[46] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum, Zug, Switzerland, Yellow Paper, 2012. [Online].
Available: https://ethereum.github.io/yellowpaper/paper.pdf.

[47] K. Wiist and A. Gervais, “Do you need a blockchain?” in Proc. Crypto
Valley Conf. Blockchain Technol. (CVCBT), 2018, pp. 45-54.

[48] X. Yan et al, “Carousel: Low-latency transaction processing for
globally-distributed data,” in Proc. Int. Conf. Manag. Data (SIGMOD’
18), 2018, pp. 231-243.

[49] H. Yu, I. Nikoli¢, R. Hou, and P. Saxena, “OHIE: Blockchain scaling
made simple,” in Proc. IEEE Symp. Security Privacy (SP), 2020,

pp. 90-105.
Jemin Andrew Choi received the B.A.Sc. degree in
computer engineering and the M.Sc. degree in com-
/ puter science from the University of Toronto, where

he worked with F. Long on blockchain authenticated
storage systems. He is broadly interested in program-
ming languages and distributed systems.

Sidi Mohamed Beillahi received the Polytechnicien
degree from Tunisia Polytechnic School, the
M.A.Sc. degree in computer engineering from
Concordia University, and the Ph.D. degree in com-
puter science from Paris Diderot University. He
is a Postdoctoral Researcher with the University
of Toronto. His research interests are in formal
verification, algorithmic verification, software verifi-
cation, programming languages, program synthesis,
distributed systems, and blockchain. He received the
2009 First Place National Scholarship in BAC C,

2
P

Mauritania, the 2014 Best Graduation Project (PFE) at Tunisia Polytechnic
School, an NSERC Postdoctoral Fellowship, Canada, and the ICBC-2021 Best
Paper Award.

Srisht Fateh Singh received the bachelor’s degree
from the EE Department, IIT Bombay in 2021,
and the M.A.Sc. degree from the ECE Department,
University of Toronto in 2023, where he is cur-
rently pursuing the Ph.D. degree. His research
interests include decentralized finance, applications
in blockchain, and systems design, in general.

1343
Panagiotis Michalopoulos (Graduate Student
Member, IEEE) received the Diploma degree

in electrical and computer engineering from the
University of Patras, Patras, Greece, in 2017, and
the M.Sc. degree in embedded systems from the
Eindhoven University of Technology, Eindhoven,
The Netherlands, in 2020. He is currently pursuing
the Ph.D. degree in electrical and computer
engineering with the University of Toronto, Toronto,
ON, Canada. His research interests include identity
and trust systems, CBDCs, and distributed ledger
technologies.

Peilun Li received the bachelor’s and Ph.D. degrees
from IIIS, Tsinghua University. Then, he assumed
the role of a technical specialist with Shanghai
Tree-Graph Blockchain Research Institute. His pri-
mary research focus lies in the realm of distributed
systems and blockchain technology.

Andreas Veneris received the Ph.D. degree from
the University of Illinois at Urbana—Champaign. He
is a Connaught Scholar and a Professor with the
Department of Electrical and Computer Engineering,
cross-appointed with the Department of Computer
Science, University of Toronto. In the past, he
held joint faculty positions with the Department of
Informatics, Athens University of Economics and
Business from 2006 to 2016, and the Department of
ECE, University of Tokyo from 2010 to 2011. For
more than 20 years, he worked in the field of CAD
for VLSI synthesis, verification and debugging using formal methods, where
he published more than 120 conference/journal papers. Today, he focuses
on Central Bank Digital Currencies (CBDCs), mechanism/economic design
of distributed systems, formal methods for smart contract verification, and
techno-legal blockchain policy/regulatory questions. He has received a 10-
year Best Paper Retrospective Award, five other best paper awards and holds
three patents. He was a member of the team in the first webcast ever (37th
Grammy Awards, 1995), an event acknowledged by the American Congress.
In February 2021, his work with the Bank of Canada became public, proposing
Canada’s Central Bank Digital Loonie—the first work of its kind that presents
a comprehensive technological, regulatory/legal and economic model for a
central bank digital currency. In 2021, he was honored to be acknowledged
for his contributions on a classified report by the Hoover Institution, prefaced
by former United States Secretary of the State Condoleezza Rice and co
authored by an extensive list of prominent world-thinkers. This report was
released on 1 March 2022 titled as “Digital Currencies: The US, China, and
the World at a Crossroads.” A week later U.S. President Joe Biden signed an
Executive Order following most of the recommendations of this report. Today
he engages with many G20 Central Banks on the topic of CBDCs.

Fan Long received the Ph.D. degree in computer
science from MIT. He is an Assistant Professor
with the Computer Science Department, University
of Toronto. He is also a co-founder of Conflux, a
high-performance next-generation public blockchain
project. His research interests include program-
ming language, software engineering, security, and
blockchain. He is a recipient of ACM SIGSOFT
Outstanding Dissertation Award.

Authorized licensed use limited to: The University of Toronto. Downloaded on April 23,2024 at 04:56:11 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

