
111

LVMT: An Efficient Authenticated Storage for Blockchain

CHENXING LI, Shanghai Tree-Graph Blockchain Research Institute, China

SIDI MOHAMED BEILLAHI, University of Toronto, Canada

GUANG YANG, Shanghai Tree-Graph Blockchain Research Institute, China

MING WU, Shanghai Tree-Graph Blockchain Research Institute, China

WEI XU, Tsinghua University, China
FAN LONG, University of Toronto, Canada

Authenticated storage access is the performance bottleneck of a blockchain, because each access can be

amplified to potentially 𝑂 (log𝑛) disk I/O operations in the standard Merkle Patricia Trie (MPT) storage

structure. In this paper, we propose a multi-Layer Versioned Multipoint Trie (LVMT), a novel high-performance

blockchain storage with significantly reduced I/O amplifications. LVMT uses the authenticated multipoint

evaluation tree (AMT) vector commitment protocol to update commitment proofs in constant time. LVMT

adopts a multi-layer design to support unlimited key-value pairs and stores version numbers instead of value

hashes to avoid costly elliptic curve multiplication operations. In our experiment, LVMT outperforms the

MPT in real Ethereum traces, delivering read and write operations six times faster. It also boosts blockchain

system execution throughput by up to 2.7 times.

CCS Concepts: • Security and privacy→Management and querying of encrypted data; • Computer
systems organization→ Peer-to-peer architectures; Reliability; • Information systems→ Version manage-
ment.

Additional Key Words and Phrases: Blockchain, Authenticated storage, Vector commitment, Smart contracts,

Ethereum, Merkle Patricia Trie, Authenticated Multipoint Evaluation Tree, Multi-layer storage design

ACM Reference Format:
Chenxing Li, Sidi Mohamed Beillahi, Guang Yang, Ming Wu, Wei Xu, and Fan Long. 2018. LVMT: An Efficient

Authenticated Storage for Blockchain. J. ACM 37, 4, Article 111 (August 2018), 33 pages. https://doi.org/

XXXXXXX.XXXXXXX

1 INTRODUCTION
Blockchains that provide decentralized, robust, and programmable ledgers at an internet scale have

recently gained increasing popularity across various domains, including financial services, supply

chain, and entertainment. For example, smart contracts built on blockchain systems now manage

digital assets worth tens of billions of dollars [1].

Early classical blockchain systems like Bitcoin [36] and Ethereum [11] have serious performance

bottlenecks in their consensus protocols, which limit the system throughput at under 30 transac-

tions per second. Nevertheless, recent technique evolutions on consensus and peer-to-peer network

Authors’ addresses: Chenxing Li, lylcx2007@gmail.com, Shanghai Tree-Graph Blockchain Research Institute, Shanghai,

China; Sidi Mohamed Beillahi, University of Toronto, Toronto, Canada, sm.beillahi@utoronto.ca; Guang Yang, Shanghai

Tree-Graph Blockchain Research Institute, Shanghai, China, guang.yang@confluxnetwork.org; Ming Wu, Shanghai Tree-

Graph Blockchain Research Institute, Shanghai, China, ming.wu@confluxnetwork.org; Wei Xu, Tsinghua University, Beijing,

China, wei.xu.0@gmail.com; Fan Long, University of Toronto, Toronto, Canada, fanl@cs.toronto.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0004-5411/2018/8-ART111 $15.00

https://doi.org/XXXXXXX.XXXXXXX

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

111:2 C. Li, S.M. Beillahi, G.Yang, M. Wu, W. Xu, and F. Long

protocols [2, 22, 23, 26, 29, 31, 33, 35, 37, 45, 46, 54, 56] have driven the achievable blockchain

throughput to more than thousands of transactions per second. Consequently, transaction execu-

tion, which is dominated by the storage access, has emerged as the new system bottleneck. Our

investigation (see Sec. 6) shows that 81% of transaction execution time is consumed at the storage

layer.

This inefficiency in the blockchain storage layer originates from the requirement for authenti-
cation. A standard permission-less blockchain system has two types of blockchain nodes: the full

nodes and the light nodes. A full node synchronizes and executes all transactions, maintaining

the blockchain ledger state. A light node (client) only synchronizes the block headers, excluding

transactions and the blockchain ledger state. Blockchain ledger states take the form of key-value

pairs. When a light node needs to ascertain the value of a given key, it queries a full node. However,

since blockchain nodes are permissionless, light nodes should not trust the responses from full

nodes. Therefore, the blockchain protocol requires the block proposer to compute a commitment

(termed the state root) for the latest ledger state and insert it into the proposed block header. A

block header with an incorrect commitment is deemed invalid. When responding to the queries

from light nodes, a full node can generate proofs corresponding to the commitments to convince

the queriers. This leads to the naming of the ledger state as authenticated.
Typically, authenticated storage employs the Merkle Patricia Trie (MPT) [18] structure, a specific

variant of the Merkle tree. Each leaf node in an MPT stores a value, and the path from the root to

the leaf node corresponds to the key of the stored value. Each inner node in the MPT stores the

crypto hash of the concatenated contents of all its children. The MPT’s root hash serves as the

commitment of the blockchain state for authentication.

Unfortunately, this authentication comes with a heavy performance price. Modifying a key-

value pair in the state requires an MPT to update hashes of all nodes along the path from the

corresponding leaf node to the root. If not cached, each state update operation could be amplified

to 𝑂 (log𝑛) storage I/O operations, where 𝑛 represents the storage size. Note that even a basic

payment transaction involves at least two ledger state updates, – decreasing the sender’s balance

and increasing the receiver’s. As the throughput of recent blockchains approaches thousands of

transactions per second, it is not a surprise that storage becomes the new bottleneck.

This paper presents LVMT, a novel high-performance authenticated storage framework with

significantly reduced disk I/O amplifications. LVMT achieves high efficiency by integrating a

multi-level Authenticated Multipoint evaluation Tree (AMT) and a series of append-only Merkle

trees. AMT is a cryptographic vector commitment scheme that can update commitment (i.e., the

hash root) in constant time [51]. Despite its constant commitment update time, there are several

key challenges to address when incorporating AMT into the LVMT design.

The first challenge arises from the expensive elliptic curve multiplication operations employed

by the AMT commitment update algorithm. From practical observation, a naive approach would

paradoxically result in a slower state update operation on the AMT than the MPT, despite the

theoretically reduced amplification. LVMT addresses this challenge with its novel key-versioned-
value design. It assigns each key a version, incrementing as the value evolves. Rather than storing

key-value pairs in the AMT, LVMT employs AMT to keep key-version pairs and uses Merkle Trees

to maintain an append-only authenticated list of key-version-value triples. Thus, every update in

LVMT results in an increment of the stored version within the AMT. Since the AMT algorithm

multiplies a precomputed elliptic curve point with the difference between the old value and the new

value (i.e., one for a version increment) during a commitment update, LVMT effectively eliminates

the expensive multiplication. Also, because the key-version-value triple list is append-only, LVMT

only needs to construct these Merkle Trees once during the block commit time, and therefore the

process is very efficient.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

LVMT: An Efficient Authenticated Storage for Blockchain 111:3

The second challenge emerges from AMT’s limitation in supporting the necessary bit-depth for

blockchain state keys. An AMT with 𝑘-bit key-space requires public parameters with 2
𝑘
elliptic

curve points. To enable efficient update, the AMT also requires pre-computation and caching of

elliptic curve points proportional to the public parameters’ size. Even for a modest 32-bit key-space,

the precomputed metadata size would exceed 256 GB, which is untenable, given that blockchain

ledger keys typically comprise 256 bits. To address this challenge, LVMT operates with a novel

multi-level multi-slot structure, integrating multiple AMTs. Each AMT in this structure has a

16-bit key-space, and the structure can automatically generate a sub-AMT on the next level to

accommodate keys-version pair with collided prefix. Since collisions are rare after the first level

and creating sub-AMT will make subsequent access more expensive, LVMT also makes each entry

in AMTs contain five slots. Therefore expansion to the next level only occur when more than five

collisions arise.

The third challenge lies in the costly maintenance of proof generation metadata. While updating

the root hash for AMT incurs constant time, maintaining the proof generationmetadata still requires

𝑂 (log𝑛) time and triggers the same degree of I/O amplifications as MPT. LVMT confronts this

issue with a proof sharding technique, which distributes the proof generation metadata to multiple

nodes. In LVMT, each full node only maintains the proof generation metadata for a shard of the

blockchain state (e.g., keys sharing the same 4-bit prefix). Our observation reveals that there are

typically thousands of full nodes in a production blockchain, and it’s unnecessary for all nodes

to maintain proof generation capabilities for all key-value pairs in the total state. Even sharded,

for any part of the state, there will still be enough nodes serving proof generation requests from

light clients. Within the current Ethereum ecosystem, most light nodes access full nodes from

specialized providers, such as Infura, who operate several full nodes to balance query workload.

By maintaining proof shards across their nodes, these providers can efficiently generate proof

for any key. Note that unlike other sharding designs [12, 29, 34, 54, 57], our proof sharding does

not alter the essential obligation of each full node to synchronize and validate blocks, process all

transactions, and accurately maintain the state root, thereby preserving security.

We have implemented LVMT [14] and integrated it into Conflux [16, 33], an open-sourced high-

performance blockchain production with smart contracts support. We evaluated LVMT against

OpenEthereum’s MPT implementation, RainBlock’s MPT structure [40], and LMPTs [15], consider-

ing both stand-alone read/write workload and end-to-end blockchain processing tasks. Our results

show that LVMT achieves up to 10x higher throughput on random state read/write operations.

When integrated end-to-end with a high-performance blockchain, LVMT achieves up to 2.7x higher

throughput for simple payment transactions, up to 2.1x higher throughput for ERC20 [42] token

transfer transactions, up to 1.7x higher throughput for Uniswap [53] native token and ERC20

token exchange transactions, and up to 2.6x higher throughput for Uniswap two ERC20 tokens

exchange transactions. This boost in performance stems from the considerable reduction in disk

I/O amplifications. In terms of amplification, LVMT performs up to 4.1x better than MPT on read

operations and up to 8.2x better on write operations.

2 BACKGROUND
In this section, we recall some background on cryptographic concepts that our system builds

on. In particular, we describe the cryptographic building blocks of the Authenticated Multipoint

evaluation Tree (AMT) [51], an efficient vector commitment protocol.

Notations:We denote [𝑛] as the integers in {𝑥 ∈ Z+ |1 ≤ 𝑥 ≤ 𝑛}. G signifies an elliptic curve group

and symbols in upper cases like𝐺, 𝑃 represent elements in the elliptic curve groups. Z𝑝 refers to an
additive group with order 𝑝 .

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:4 C. Li, S.M. Beillahi, G.Yang, M. Wu, W. Xu, and F. Long

2.1 Authenticated Storage in Blockchain
In a standard permission-less blockchain system, blockchain nodes can be distinguished into two

types: full nodes and light nodes. A full node synchronizes and executes all transactions, maintaining

the blockchain ledger state accordingly. A light node (client) synchronizes only the block headers,

excluding transactions and blockchain ledger state.

When a full node proposes a new block, it is required to execute transactions in that block and

incorporate the commitment of the post-execution ledger state into the block header. The node

keeps a write-back cache during transaction execution, committing all modifications to the storage

after executing all transactions in a block. The authenticated storage needs to provide two interfaces

to the execution engine:

• Get(k) → v: Retrieves the value v associated with a given key k.
• Set({(k, v)𝑖 }, 𝑒) → c: Flushes a series of key-value pairs (k, v) to the storage with block

number 𝑒 , obtaining the commitment c of the ledger state after changes.
When a light node wants to know the value of a specific key, it queries a full node, expecting a

response of the value along with proof with respect to the ledger commitment. The light client

examines whether the commitment exists within the set of verified valid commitments, then checks

the validity of the associated proof. So the authenticated storage must provide two algorithms for

proof generation and verification:

• Respond(k) → (v, 𝜋, c): Returns the value v of key k with proof 𝜋 with respect to the most

recent commitment c.
• Verify(k, v, 𝜋, c) → true/false: Validates the response from the full node.

2.2 Elliptic Curve Group
The elliptic curve group plays a fundamental role in various cryptographic protocols. This group con-

ducts an additive operation over points on an elliptic curve, such as

{
(𝑥,𝑦) ∈ Z2𝑞 | 𝑦2 = 𝑥3 + 𝑥 + 7

}
,

where 𝑞 is a large prime number. An infinite point is included as the identity element. The operation

𝑎 · 𝑃 represents 𝑃 added to itself 𝑎 times within the group, where 𝑎 is a positive integer, and 𝑃 is a

point on the curve. An elliptic curve group is characterized by a starting point 𝐺 , from which a

sequence of points𝐺, 2 ·𝐺, 3 ·𝐺, · · · can be generated. If the elliptic curve group is cryptographically

secure, this sequence exhibits the following properties:

(1) 𝑛 ·𝐺 is periodic in 𝑛, with the period being a large prime integer 𝑝 , i.e., 𝑛 ·𝐺 = (𝑛 + 𝑝) ·𝐺 ;
(2) For a randomly selected 𝑛, deriving 𝑛 from 𝑛 ·𝐺 is computationally infeasible.

2.3 KZG Commitment
Kate et al. proposed KZG polynomial commitment protocol [28], enabling someone to commit a

polynomial function 𝑓 to a commitment, and prove the value 𝑓 (𝑥) of any given position 𝑥 with

respect to that commitment.

The KZG commitment protocol is built on a bilinear map. Consider 𝐺1 and 𝐺2 as the starting

points of two elliptic curve groups G1,G2 respectively, each with the same group order 𝑝 . The

bilinear map 𝑒 : G1×G2 → G𝑇 is homomorphic such that the equation 𝑒 (𝑎 ·𝐺1, 𝑏 ·𝐺2) = 𝑎𝑏 ·𝑒 (𝐺1,𝐺2)
holds for any 𝑎, 𝑏 ∈ Z𝑝 . Here,G𝑇 denotes another group of the same order 𝑝 . BLS12-381 [8] from BLS

families [3] and BN254 [5] from BN families [4] are widely-used deployed systems implementing

bilinear maps. The groups G1 and G2 are elliptic curve groups of order 𝑝 , and 𝐺1 and 𝐺2 are their

perspective starting points.

For a given polynomial function 𝑓 : Z𝑝 → Z𝑝 of degree 𝑛, the KZG commitment assumes a series

of public parameters 𝜏 ·𝐺1, 𝜏
2 ·𝐺1, 𝜏

3 ·𝐺1, · · · , 𝜏𝑛 ·𝐺1 in a trusted setup and commits function 𝑓 to

𝐶 := 𝑓 (𝜏) ·𝐺1. The public parameters are generated by a trusted party using a random 𝜏 , which is

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

LVMT: An Efficient Authenticated Storage for Blockchain 111:5

forgotten after generation. Secure multi-party computation protocols [9, 10, 25] enable multiple

participants to collaboratively generate these public parameters, ensuring that no participant can

ascertain the exact value of 𝜏 .

For any index 𝑖 ∈ Z𝑝 , the expression 𝑥 − 𝑖 should divide 𝑓 (𝑥) − 𝑓 (𝑖). This suggests that ℎ𝑖 (𝑥) :=
𝑓 (𝑥)−𝑓 (𝑖)

𝑥−𝑖 is indeed a polynomial. Hence, the proof 𝜋 of 𝑓 (𝑖) is defined as ℎ𝑖 (𝜏) · 𝐺1. Given that

ℎ𝑖 (𝑥) is a polynomial, the prover can compute the coefficients of ℎ𝑖 (𝜏). Thus, ℎ𝑖 (𝜏) ·𝐺1 forms a

linear combination of the public parameters with known coefficients. The prover can compute it in

a short time. A verifier, querying 𝑖 with answer 𝑦 = 𝑓 (𝑖) and proof 𝜋 := ℎ𝑖 (𝜏) ·𝐺1, can verify the

proof by checking if

𝑒 (𝜋, (𝜏 − 𝑖) ·𝐺2) = 𝑒 (𝐶 − 𝑦 ·𝐺1,𝐺2).
If the proof 𝜋 is correctly constructed, the check must pass because

𝑒 (𝜋, (𝜏 − 𝑖) ·𝐺2) = (ℎ(𝜏) · (𝜏 − 𝑖)) · 𝑒 (𝐺1,𝐺2)
= 𝑒 ((𝑓 (𝜏) − 𝑓 (𝑖)) ·𝐺1,𝐺2)
= 𝑒 (𝐶 − 𝑦 ·𝐺1,𝐺2).

If 𝑓 (𝑖) ≠ 𝑦, ℎ(𝑥) becomes a fraction, making it difficult to find a proper proof without knowing 𝜏 .

Kate et al. proved the binding property of this protocol [28].

The KZG commitment also supports the proof of a batch of positions. To prove that 𝑓 (𝑥) equals
to 0 at a set of positions 𝑆 , the proof 𝜋 is constructed by

𝑓 (𝜏)∏
𝑖∈𝑆 (𝜏−𝑖) ·𝐺1.

A vector commitment scheme can be built with KZG commitment by converting a vector ®𝑎 to a

polynomial function 𝑓 by Lagrange interpolation. Formally, for an input vector ®𝑎 with 𝑛 elements,

the interpolated function 𝑓 is defined by 𝑓 (𝑥) = ∑𝑛
𝑖=1 𝑎𝑖 · 𝐼𝑖,𝑛 (𝑥), where 𝑎𝑖 is the 𝑖-th element of ®𝑎

and 𝐼𝑖,𝑛 (𝑥) is a Lagrange function that satisfies 𝐼𝑖,𝑛 (𝑖) = 1 and 𝐼𝑖,𝑛 (𝑥) = 0 for 𝑥 ≠ 𝑖 and 1 ≤ 𝑥 ≤ 𝑛.

When updating the value at position 𝑖 from 𝑎𝑖 to 𝑎
′
𝑖 , the corresponding commitment 𝐶 can be

simply updated to

𝐶′ := 𝐶 + (𝑎′𝑖 − 𝑎𝑖) · 𝐼𝑖,𝑛 (𝜏) ·𝐺1. (1)

If the prover caches results 𝐼𝑖,𝑛 (𝜏) ·𝐺1 for all 𝑖 , updating commitment requires only one multipli-

cation and one addition on the elliptic curve G1, which takes 𝑂 (1) time.

2.4 Authenticated Multipoint Evaluation Tree
Although the KZG commitment enables constant-time updates to the commitment 𝐶 , it requires

𝑂 (𝑛) time to construct a proof for a given position or to maintain proofs for all positions. In a

blockchain system, where the vector being committed to is frequently changing, the KZG commit-

ment cannot generate proofs efficiently for queries with arbitrary indices 𝑖 .

To address this issue, Alin et al. proposed the Authenticated Multipoint evaluation Trees (AMT)

commitment protocol [51], which maintains auxiliary information of size 𝑂 (𝑛 log𝑛) and can

generate a proof in 𝑂 (log𝑛) time.

Consider an example with 𝑛 = 8 = 2
3
. For an input vector ®𝑎 with eight elements, AMT computes

its Lagrange interpolation 𝑓 (𝑥) which satisfies 𝑓 (𝑖) = 𝑎𝑖 for 1 ≤ 𝑖 ≤ 8. The function 𝑓 (𝑥) is then
partitioned into two functions 𝑓0 (𝑥) and 𝑓1 (𝑥). In the subset 𝑥 ∈ [8], 𝑓1 (𝑥) mirrors 𝑓 (𝑥) for even 𝑥

and is zero otherwise, while 𝑓2 (𝑥) mirrors 𝑓 (𝑥) for odd 𝑥 and is zero otherwise. For values of 𝑥

outside this subset, 𝑓1 (𝑥) and 𝑓2 (𝑥) are determined by Lagrange interpolation. Consequently, 𝑓 (𝑥)
can be re-expressed as 𝑓 (𝑥) = 𝑓0 (𝑥) + 𝑓1 (𝑥). AMT continues to subdivide 𝑓0 (𝑥) recursively into

two functions: 𝑓0,0 (𝑥) and 𝑓0,1 (𝑥). Here, 𝑓0,0 mirrors 𝑓 (𝑥) for 𝑥 ∈ {4, 8}, and 𝑓0,1 (𝑥) mirrors 𝑓 (𝑥)
for 𝑥 ∈ {2, 6}. This recursive process of partitioning generates a full binary tree, where each node

corresponds to a function. Each inner node’s function is the sum of the function at its child nodes,

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:6 C. Li, S.M. Beillahi, G.Yang, M. Wu, W. Xu, and F. Long

and each leaf node is a multiplication of an identity Lagrange function because it mirrors 𝑓 (𝑥) at a
single point 𝑥 . For example, 𝑓0,0,1 (𝑥) = 𝑎4 · 𝐼4,8 (𝑥).
Each inner node of the AMT is associated with two elements: 1) the KZG commitment of its

corresponding function and 2) a batch proof for the indices at which the function is zero according

to the partitioning process. When proving the value of a given entry, e.g., 𝑎4, the prover finds the

path from the root to the corresponding leaf node: 𝑓 (𝑥) → 𝑓0 (𝑥) → 𝑓0,0 (𝑥) → 𝑓0,0,1 (𝑥). It then
iteratively decomposes functions along this path to express 𝑓 (𝑥) into as a sum of four components:

𝑓1 (𝑥) + 𝑓0,1 (𝑥) + 𝑓0,0,0 (𝑥) + 𝑓0,0,1 (𝑥). The prover then outputs the associate commitments for 𝑓1 (𝑥),
𝑓0,1 (𝑥), and 𝑓0,0,0 (𝑥), alongside their batch proofs demonstrating these functions equal to zero

at 𝑥 = 4. The verifier checks the correctness of these batch proofs and the consistency among

commitments: whether the sum of commitments for 𝑓1 (𝑥), 𝑓0,1 (𝑥), 𝑓0,0,0 (𝑥), and 𝑓0,0,1 (𝑥) = 𝑎4 ·𝐼4.8 (𝑥)
equals to the commitment for 𝑓 (𝑥).
Updating an entry in the AMT involves traversing from the root to the leaf corresponding

and updating the associate elements along this path. The remaining inner nodes are not affected,

enabling AMT to maintain the proofs in 𝑂 (log𝑛) time.

The nodes of the AMT serve as auxiliary information for generating proofs only. In a blockchain

system, a miner without serving client queries may discard this auxiliary information and only

maintain the commitment, which can be updated in constant time.

3 OVERVIEW
Recent works [32, 43] have shown that the majority of execution time in a transaction is spent

on operations that access the blockchain state. For instance, a profiling experiment [32] shows

that read and write operations to the blockchain state account for more than 67% of the execution

time for the transaction executing the transfer function of ERC-20 smart contract [20, 42]. In this

section, we present an overview of how LVMT tackles this problem. In particular, we propose a

new authenticated storage system to reduce the amplification of read and write operations that

access the blockchain state.

Our proposed system is based on AMT since it has an ideal time complexity, i.e., constant

cost in updating the commitment. In particular, our proposed system solves several challenges to

implement an efficient blockchain storage system using AMT:

First, although AMT costs constant time in updating the commitment, the constant ratio is

large for a blockchain system. Table 1 shows the result of a micro-benchmark carried on an Intel

i9-10900K CPU machine. It shows the time cost for basic cryptographic operations. Note that an

elliptic curve multiplication takes about 0.1 ms, which is even much slower than an updating

operation in MPT.

Second, to support data with 𝑛 maximum entries, AMT requires precomputed parameters in

size of 𝑂 (𝑛 log𝑛) and maintains auxiliary information in size of 𝑂 (𝑛 log2 𝑛). Thus, AMT cannot

support key-value pairs for an arbitrary-length bit string. As the size of the blockchain ledger state

continues to grow, AMT is not a scalable solution.

Last, a blockchain system must consider the slowest node. Even if most miners do not need to

maintain the auxiliary information for proof, the authenticated storage must guarantee the nodes

for responding queries can keep up.

We propose the following techniques to resolve the challenges above. First, we design a versioned

database that only stores the version number of keys in AMT, thereby avoiding the elliptic curve

multiplications. This design also supports arbitrary lengths of values, as they are not stored in AMT.

Second, we extend AMT to multiple levels to accommodate version numbers for unlimited keys,

making the AMT size relatively small to optimize cache for parameters. To support arbitrary key

lengths and minimize deep updates in the multi-level hierarchy, we utilize key hashes to allocate

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

LVMT: An Efficient Authenticated Storage for Blockchain 111:7

Pairing engines BLS12-381 BN254

Addition 0.68 0.34

Multiplication 169 92

Table 1. Time cost of operations over the primary curve G1 of pairing
functions (𝜇s).

slots for version numbers. Last, we introduce proof sharding to reduce the single node’s cost in

maintaining auxiliary information for proofs.

3.1 Versioned Key-value Database
We designed a versioned authenticated storage to avoid multiplication on the elliptic curve during

commitment updates. As shown in Figure 1b, the multi-level AMTs store key-version pairs, which

only serve to identify the recent version number of a key. LVMT accumulates the key-version-value

tuples in an append-only authenticated data structure consisting of a series of Merkle trees, with

each block constructing one Merkle tree from the key-version-value tuples for value changes in

that block.

Imagine a scenario where the blockchain processes a block, setting a key-value pair (key, val).
LVMT first locates the corresponding entry of key in the multi-level AMTs to increment the stored

version number by one. Assume the new version number for key is ver . LVMT then appends a

new tuple (key, ver, val, loc) to the Merkle tree being constructed for the block. Here, loc is a tuple
(level, slot) that records the level and slot in the multi-level AMTs where the key’s version is located.

The construction cost of a Merkle tree is linear with the number of version tuples. Once constructed,

the Merkle tree for a block remains immutable, except for garbage collection of obsolete nodes. As

the blockchain is append-only, the list of these Merkle trees is also append-only.

When generating a proof for a key-value pair (key, val), LVMT first use the multi-level AMTs to

prove the most recent version ver of the key key. It then uses Merkle trees to prove the existence

of a tuple (key, ver, val, loc). Since the roots of the Merkle trees are endorsed by the blockchain

consensus protocol, light clients can trust that the Merkle trees are generated correctly without

duplicate tuples having the same key and ver . As the location of the version slot is included in the

version tuple of the key, the prover can not cheat by providing a version number proof of another

slot.

Note that updating one element 𝑎𝑖 to 𝑎′𝑖 in an AMT requires computing (𝑎′𝑖 − 𝑎𝑖) · 𝐼𝑖,𝑛 (𝜏) · 𝐺1

(equation 1), multiplying 𝑎′𝑖 − 𝑎𝑖 to the elliptic curve point 𝐼𝑖,𝑛 (𝜏) ·𝐺1. In the versioned key-value

database, 𝑎𝑖 is essentially a version number and 𝑎′𝑖 − 𝑎𝑖 always equal 1. Thus, we eliminate an

elliptic curve multiplication in each storage write, saving approximately 100 𝜇s.

Since the frequency of bumping version number is limited by the block generation rate, we can

conserve the bits used for storing version number and store multiple version numbers in a one

vector entry. For example, when employing BN254 as the underlying bilinear mapping parameter,

each entry is an element in Z𝑝 , where 𝑝 is a prime integer in

(
2
254, 2255

)
. This suggests that implies

each entry can store at most 254 bits. In a blockchain system generating 10 blocks per second, the

version number will not exceed 2
40
in 3000 years. So each entry can be divided into six slots with

40 bits as shown in Figure 1a.

3.2 Multi-level AMT
To make AMT scalable and allow it to store the version number for an unlimited number of keys,

we introduce multi-level AMTs as shown in Figure 1a. The authenticated storage is initiated by one

AMT as the root AMT. Each entry in the AMT contains several slots for storing version numbers.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:8 C. Li, S.M. Beillahi, G.Yang, M. Wu, W. Xu, and F. Long

AMTs

Input vector with four
elements

Multiple slots for version
numbers in one element

Commitment of AMT

Occupied slot for
key-version pairs

Vacant slot for
key-version pairs

A Slot for sub-AMT
with label

Allocated slot for
key 100111…

A Commitment
with label

Rt

The root AMT

A

A

Sub-AMT-2

B

B

Sub-AMT-(2,1)

1st level 2nd level 3rd level ······

00

01

10

11

00

01

10

11

00

01

10

11

(a) Multi-level AMTs

Set (key,val)

Append-only
Merkle treesMulti-level AMTs

Store tuple
(key,ver,val,loc)

Prove existence of tuple
(key,ver,val,loc)

Increase ver of
key by 1

Prove key

Prove the current
ver of key

(b) Versioned key-value database

Set (key,val)

(key , , val, (3,2))

((2,1), ,)B B

(2 , ,)A A

1. Incease version numbers
in , and by 1
and update commitments.
2. Add the tuples to the
 Merkle trees.

A B

Prove key
1. Prove the version numbers with
respect to the AMT commitment:

2. Prove the existence of the left
three tuples in Merkle trees to
show the commitments at given
version numbers.

B A RtB A

B A RtB A

The Sub-AMT level
allocating this key The slot index

(c) Maintenance and proving on Multi-level AMTs

Fig. 1. LVMT architecture.

One slot in each entry is reserved for storing the version number of the commitment hash of the

sub-AMT, with the remaining slots utilized for key-value pairs.

Let 𝑘 denote the height of the AMT. When allocating a slot for a new key, LVMT accesses the

entry in the root AMT whose index aligns with the first 𝑘 bits of the key hash. If this entry lacks

a vacant slot, LVMT accesses the corresponding sub-AMT and locates the entry in the sub-AMT

whose index matches the next 𝑘 bits of the key hash. LVMT recursively visits the sub-AMTs to find

a vacant slot for the new key. Figure 1a presents an example with 𝑘 = 2 for allocating a version slot

for a key with hash 100111 · · · . As the first two bits of key hash are 10, LVMT accesses the entry

with index 2 and attempts to find a vacant slot. Since all slots in the entry are occupied, LVMT

proceeds to the corresponding sub-AMT-2. Picking the next two bits 01, it accesses the entry with

index 1, and recursively visits the sub-AMT-(2,1) because there is no vacant slot again. Finally,

LVMT finds the third slot at the third level being vacant and allocates this slot.

The commitment of a sub-AMT is treated similarly to a key-value pair, where the key represents

the index of the sub-AMT and the value is the commitment. The Merkle trees not only store

key-version-value tuples for standard key-value pairs, but they also store the tuples of the sub-AMT

index, the version of the sub-AMT commitment, and the commitment hash.

Figure 1c illustrates how LVMT maintains the AMTs and Merkle trees when a block changes

the key with hash 100111 · · · . LVMT first increments the version number for this key by one. This

in turn alters the commitment of sub-AMT-(2,1), prompting LVMT to also increase the version

number for the commitment (the slot labeled “B”) by one. Recursively, the commitment of sub-

AMT-2 is changed and the version number labeled “A” is updated. Finally, LVMT gets the updated

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

LVMT: An Efficient Authenticated Storage for Blockchain 111:9

commitment of the root AMT. LVMT appends the tuples of changed keys and commitments into

the Merkle trees along with the normal tuple of the key-value pair.

When generating a proof for this key, LVMT finds the most recent version of tuples for sub-

AMT-2, sub-AMT-(2,1) and this key. LVMT proves the existence of these tuples in Merkle trees and

confirms the correctness of appeared version numbers with respect to their AMT commitments.

When proving the non-existence of a key, LVMT affirms that all the possible slots for this key are

vacant or have been allocated to other keys.

3.3 Proof Sharding
We recall that the AMT maintains a binary tree, where each node holds a commitment and a batch

proof. Each input entry corresponds to a leaf in this tree. When generating a proof, AMT picks

commitments and batch proofs from the siblings of nodes along the path from this leaf to the root.

Each node can be updated independently of the other nodes, facilitating the parallelization of tree

maintenance. Each blockchain node can maintain a shard of the proof. It picks a subtree of the root

AMT and takes responsibility for generating proofs for the leaves in this subtree, and the sub-AMTs

extended from these leaves. Multiple blockchain nodes can collaboratively generate proof for any

key. Similarly, the storage for the Merkle tree can be distributed to multiple nodes by the block

number.

Maintaining proof shards is an additional task for serving light clients, which does not impact a

node’s ability to participate in consensus and earn rewards, seemingly providing little incentive

for nodes to engage in such maintenance. Organizing and dispatching the maintenance of proof

shards across the entire blockchain network pose considerable challenges. However, in practice,

serving light clients does not rely on a decentralized mechanism. Instead, specialized merchants

such as Infura provide these services via subscription models, and manage multiple full nodes to

balance query requests. This setup enables such service providers to collectively undertake proof

shard maintenance over multiple nodes.

4 LVMT DESIGN
Now we formally define LVMT, which utilizes a key-value database as a backend and maintains a

tuple of key-value maps (KM,AM,MM,VM, LM) where KM stores the key-value pairs; AM stores

the AMTs data structures; MM stores the append-only Merkle trees, each of which corresponds to

the changes in a block; VM stores the version slot allocation information for keys; and LM records

the locations inMM of the most recent version for a key or a sub-AMT in the Merkle trees. Each

AMT in LVMT encompasses the following components:

• comm: the commitment of AMT;

• proof_tree: the proof tree of AMT;

• leaves: a list of leaves; leaves[𝑖] denotes the leaf corresponding to the 𝑖-th element of the input

vector. Each leaf comprises the two lists vers and keys. vers[0] stores the version number for

the sub-AMT. vers[1] to vers[5] store the version numbers for the keys keys[1] to keys[5],
respectively. Note that only vers contribute to the AMT commitment.

4.1 Interfaces to the Transaction Execution
LVMT provides the following two interfaces (instructions) for the blockchain execution layer:

• Get(k) → val: Reads the value val stored in k;
• Commit(W, 𝑒) → (aroot, hroot): Flushes the changed key-value pairs in W with block

number 𝑒 and produces the commitment of LVMT.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:10 C. Li, S.M. Beillahi, G.Yang, M. Wu, W. Xu, and F. Long

Algorithm 1 A procedure to compute a commitment. It takes a list of key-value pairs W and a

block number 𝑒 , and returns the commitments aroot and hroot.
1: procedure Com(W, 𝑒)

2: M← []; T← { };
3: foreach (k, val) inW
4: (lv, tidx, sidx, ver) ← ComKV(k, val) ;
5: M← (k, ver, val, lv, sidx) :: M;

6: T← {(lv, tidx) } ∪ T;
7: 𝑖 ←maximum lv in T;
8: while 𝑖 ≥ 0

9: foreach (lv, tidx) in T with lv = 𝑖
10: (𝐶, ver) ← UpdComVer(lv, tidx);
11: M← (lv, tidx, ver, comm) :: M;

12: if lv > 0

13: T← {(lv − 1, ⌊tidx/𝑛⌋) } ∪ T;
14: foreach (k, ver, val, lv, sidx) inM with index 𝑖

15: LM[k] ← (𝑒, 𝑖) ;
16: foreach (lv, tidx, ver,𝐶) inM with index 𝑖

17: LM[(lv, tidx)] ← (𝑒, 𝑖) ;
18: Build merkle tree of M and store the tree in MM;

19: mroot← Merkle root of M;

20: hroot←Merkle root of the mroot of all the commits;

21: aroot← AM[(0, 0)] .comm;

22: return (aroot, hroot) ;

Algorithm 2 A procedure to compute the commit of a key-value pair. It returns the level lv, the
tree index tidx, the slot index sidx of the changed AMT, and the version ver.
1: procedure ComKV(k,val)
2: if 𝐾𝑀 contains k
3: (lv, sidx) ← 𝑉𝑀 [k];
4: else
5: (lv, sidx) ← AllocateSlot(k) ;
6: 𝑉𝑀 [k] ← (lv, sidx) ;
7: (tidx, lf) ← LeafAtLevel(lv, k) ;
8: ver← lf.vers[sidx];
9: lf.vers[sidx] ← lf.vers[sidx] + 1;
10: Update the corresponding commitments and proofs.;

11: ver← ver + 1;
12: return (lv, tidx, sidx, ver) ;

These interfaces match the requirements from the blockchain execution engine introduced in

Section 2.1. The execution engine uses the instruction Get to fetch data from the storage and LVMT

simply loads the value correspondingly from KM.

The instruction Commit is invoked after the execution of a block. LVMT commits the key-value

pairs W using the procedure Com defined in Algorithm 1. The returned commitments will be filled

in the block header. The commit returned values consist of the roots of both the top-level AMT and

MPT.

The procedure Com first commits the key-value pairs inW (Lines 3 to 6) with the sub-procedure

ComKV. Then it updates the version numbers of all the affected sub-AMTs from the deepest sub-

AMT to the root AMT (Lines 7 to 13) using the procedure UpdComVer. This procedure maintains

the version number for commitments of sub-AMTs similar to ComKV. While maintaining the

version numbers, LVMT collects the tuples of keys, versions, values, and other metadata in a listM

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

LVMT: An Efficient Authenticated Storage for Blockchain 111:11

Algorithm 3 A procedure to allocate a version slot to a new key. It takes the key k to allocate a

slot for, and returns the level and the allocated slot index.

1: procedure AllocateSlot(k)
2: lv← 0;

3: while true
4: (tidx, leaf) ← LeafAtLevel(lv, 𝑘) ;
5: for 𝑗 ∈ [5]
6: if leaf.vers[𝑗] == 0

7: leaf.keys[𝑗] ← k;
8: return (lv, 𝑗) ;
9: lv← lv + 1;

Algorithm 4 A procedure to compute the AMT index and the leaf index of a key key at a AMT

level lv. It returns the tree index tidx and the leaf leaf corresponding to the key key at level lv.
1: procedure LeafAtLevel(lv,key)
2: tidx← first bit to (𝑘 · lv)-th bit of 𝐻 (key) ;
3: lidx← (𝑘 · lv + 1)-th bit to (𝑘 · (lv + 1))-th bit of 𝐻 (key) ;
4: leaf ← 𝐴𝑀 [(lv, tidx)] .leaves[lidx];
5: return (tidx, leaf) ;

Algorithm 5 A procedure to update the commitment and version of an AMT at level lv and tree

index tidx. It returns the commitment 𝐶 and the updated version number ver.
1: procedure UpdComVer(lv, tidx)
2: 𝐶 ← AM[(lv, tidx)] .comm;

3: ptidx← ⌊tidx/𝑛⌋;
4: plidx← tidx mod 𝑛;

5: ver← AM[(lv, ptidx)] .leaves[plidx] .ver[0];
6: Increase AM[(lv, ptidx)] .leaves[plidx] .ver[0] by 1;

7: Update the corresponding commitments and proofs;

8: ver← ver + 1;
9: return (𝐶, ver) ;

(Line 5). The system treats a pair of the sub-AMT index and its commitment similarly to a key-value

pair (Line 11). LVMT builds a Merkle tree forM, thereby authenticating the value of a given key

and version (Line 19). It also stores the positions of these elements in the Merkle trees (Lines 15

and 17). So when generating a proof, the prover can locate the corresponding Merkle leaves of a

key or an AMT commitment.

The sub-procedure ComKV (Algorithm 2) is implemented to maintain and update the version

numbers. ComKV(k, val) first finds the allocated version slot for the given key k (Line 3). If the

key has not been allocated a version slot, it allocates a slot to it (Line 5). It uses the sub-procedure

AllocateSlot (Algorithm 3) to find a vacant slot in the AMT to allocate. In particular, starting

from the root AMT, AllocateSlot computes the tree and leaf indices for the given key at each

level, checks if the leaf has a vacant slot, and then returns the level and slot indices of the slot; if

the leaf doesn’t have a free slot, it proceeds to the next level.

Then, ComKV computes the corresponding tree index tidx and the leaf lf for k at level lv (Line 7)
using the sub-procedure LeafAtLevel (Algorithm 4), which finds the corresponding AMT index

and leaf for the key k at the level lv using the hash 𝐻 (k) of k. Since each AMT has𝑚 levels and

2
𝑚
leaves, the first𝑚 · lv bits of 𝐻 (k) decides the AMT index and the subsequent𝑚 bits locate

the leaf in the tree. Finally, ComKV locates the slot for this key and updates its version and other

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:12 C. Li, S.M. Beillahi, G.Yang, M. Wu, W. Xu, and F. Long

Algorithm 6 A procedure to generate a proof for an existing key k. It returns the proof of the key.
1: procedure GenProof(k)
2: keypf ← ProveKey(k) ;
3: (lv, sidx) ← VM[k];
4: while lv > 0

5: tidx← first bit to (𝑘 · lv)-th bit of 𝐻 (k) ;
6: commpfs[lv] ← ProveCom(lv, tidx) ;
7: lv← lv − 1;

8: return (keypf, commpfs) ;

Algorithm 7 A procedure to prove a given key version. It returns the proof of the key version.

1: procedure ProveKey(k)
2: (tidx, leaf) ← LeafAtLevel(lv, k) ;
3: vers← leaf.vers;
4: 𝐶 ← 𝐴𝑀 [(lv, tidx)] .comm;

5: val← 𝐾𝑀 [k];
6: (lv, sidx) ← 𝑉𝑀 [k];
7: merklepf ←Prove the existence of (k, vers[sidx], val, lv, sidx) w.r.t. the current hroot
8: amtpf ←Prove vers are the version numbers w.r.t. the commitment𝐶

9: return (merklepf, amtpf, vers, sidx, val,𝐶) ;

information according to AMT’s rule (Line 8 to 10). The sub-procedure UpdComVer (Algorithm 5)

updates the commitment and its version number given an AMT located by its level and index.

4.2 Proving Key-value Pairs
As an authenticated storage, LVMT provides the following two interfaces to allow a user to query

a value from an untrusted server and to verify the value with the commitment.

• GenProof (k) → 𝜋 : Generates proof 𝜋 for key k;
• Verify(k, v, 𝜋, comm) → true/false: Verifies the key value pair (k, v) with respect to a ledger

state commitment.

Proof generation
When responding to a query k from a light node, a full nodewill generate proof 𝜋 using the procedure

Prove shown in Algorithm 6 and respond with the loaded value and the current commitment.

The procedure Prove consists of two parts: 1) the proof of the value val of the key k with respect

to the sub-AMT it belongs to (line 2 in Algorithm 6) using the sub-procedure ProveKey shown in

Algorithm 7; 2) the proof of the commitment for all the sub-AMT along the path from k’s sub-AMT

to the root AMT (excluding the root AMT) (lines 4- 7 in Algorithm 6) using the sub-procedure

ProveCom shown in Algorithm 8.

In ProveKey, we compute the Merkle proof for the existence of the tuple of the key (or the

AMT index), the value (or the AMT commitment) and the version (line 7 in Algorithm 7). We then

compute the AMT proof for the version number (line 8 in Algorithm 7). ProveKey then returns

the Markle and AMT proofs and other metadata. Similarly, in ProveCom, we also compute the

Merkle proof for the sub-AMT, and return it with the AMT proof of the version number and other

metadata.

Non-existence proof
The process for generating a non-existence proof in LVMT is depicted in Algorithm 9. This procedure

proves the non-existence of a key k by demonstrating that all potential version number slots for

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

LVMT: An Efficient Authenticated Storage for Blockchain 111:13

Algorithm 8 A procedure to prove the level lv and the tree index tidx of a sub-AMT. It returns the

proof of the commitment of the sub-AMT.

1: procedure ProveCom(lv,tidx)
2: ptidx← ⌊tidx/𝑛⌋;
3: plidx← tidx mod 𝑛;

4: vers← 𝐴𝑀 [(lv − 1, ptidx)] .leaves[plidx] .vers;
5: 𝐶𝑝 ← 𝐴𝑀 [(lv − 1, ptidx)] .comm;

6: 𝐶 ← 𝐴𝑀 [(lv, tidx)] .comm;

7: merklepf ←Prove the existence of (lv, tidx, vers[0],𝐶) w.r.t. the current hroot
8: amtpf ←Prove vers are the version numbers w.r.t. the commitment𝐶𝑝

9: return (merklepf, amtpf, vers,𝐶𝑝) ;

the key are already allocated to other keys. It first allocates a version slot for k and followed by an

immediate rollback of the allocation (lines 2-3 in Algorithm 9). This process finds the next vacant

slot for k. Then, it proves the version number of this slot is zero, a process similar to Algorithm 6

except that it omits the Merkle proof of the key (lines 5-12 in Algorithm 9). This demonstrates

that the slot is indeed unoccupied. Last, it shows that all other potential slots for k are already

allocated to different keys. It generates proof for them; the second fields of these proofs can be

omitted since they have the same information as commpfs computed in line 11 in Algorithm 9.

Thus, a non-existence proof in LVMT proves the absence of a key by showing that all its potential

slots are occupied by other keys.

Algorithm 9 A procedure to compute the non-existence proof for a given key.

1: procedure NonExistanceProof(k)
2: (lv, sidx) ← AllocateSlot(k) ;
3: Roll back the changes in allocating slot for k
4: (tidx, leaf) ← LeafAtLevel(lv, k) ;
5: vers← leaf.vers;
6: 𝐶 ← 𝐴𝑀 [(lv, tidx)] .comm;

7: amtpf ←Prove vers are the version numbers w.r.t. the commitment𝐶

8: zeropf ← (amtpf, vers, sidx,𝐶) ;
9: while lv > 0

10: tidx← first bit to (𝑘 · lv)-th bit of 𝐻 (k) ;
11: commpfs[lv] ← ProveCom(lv, tidx)
12: lv← lv − 1;

13: L← [];
14: for 𝑖 ∈ [sidx − 1]
15: keypf ← the first component of prove(leaf.keys[𝑖]) ;
16: L← (leaf.keys[𝑖], keypf) ∪ L;
17: while lv > 0

18: lv← lv − 1;

19: (tidx, leaf) ← LeafAtLevel(lv, k) ;
20: for 𝑖 ∈ [5]
21: keypf ← the first component of prove(leaf.keys[𝑖]) ;
22: L← (leaf.keys[𝑖], keypf) ∪ L;
23: keypfs← L;
24: return (zeropf, commpfs, keypfs) ;

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:14 C. Li, S.M. Beillahi, G.Yang, M. Wu, W. Xu, and F. Long

Algorithm 10 A procedure to verify the proofs keypf and commpfs with respect to an AMT root

aroot and Merkle root mroot.
1: procedure VerifyProof(keypf, commpfs, aroot, mroot)
2: Verify the AMT proofs and the merkle proofs in keypf and commpfs;
3: Verify the commitment in commpfs[1] equals to aroot
4: if all the verification pass

5: return true;
6: else
7: return false;

Proof verification
The light node verifies the proof using the procedureVerify shown in Algorithm 10, which recovers

the tuple of Merkle leaves to be verified from the proof and verifies the AMT proofs and the Merkle

proofs.

4.3 State Rollback
Some blockchain consensus protocols do not have reversion or forking, making authenticated

storage with rollback capabilities unnecessary for blockchain systems based on these protocols.

However, other blockchain systems might need to revert the ledger state to a previous height.

To support state rollback, LVMT will need to record the metadata for all historical versions of

each key in the map LM, instead of the most recent. Since LVMT does record every key-version-

value tuple in the map MM along with essential metadata in the maps LM and VM, the process of

reverting to a historical state is therefore straightforward. During a rollback, LVMT retrieves Merkle

trees corresponding to the reverted blocks from the map MM. These trees record modifications

to storage entries during the specified periods, allowing LVMT to identify altered keys and their

required rollback versions. Using this information and metadata in the maps LM and VM, LVMT

updates the version numbers in the AMT and recovers the corresponding AMT nodes in the map

AM and the values recorded in the map KM. Finally, LVMT removes any keys allocated during the

rollback phase from the map VM, discards the Merkle trees corresponding to the reverted blocks

from the map MM, and deletes entries in the map LM which are associated with the reverted

key-versions.

4.4 Garbage Collection for Append-only Merkle Trees
As a key’s version number increases, the old version tuples within the append-only Merkle trees

become unnecessary for future proofs. When a subtree in a Merkle tree only has obsolete children,

the entire subtree can be truncated, and only the subtree root is stored. A background thread

performs this garbage collection to prevent impacting LVMT’s performance under heavy workloads.

To track old Merkle nodes for garbage collection, LVMT first scans the Merkle trees within the

map MM to determine which keys have changes during a specific timeframe and to ascertain the

version numbers before and after each change. Then, LVMT can locate the Merkle nodes to be

removed by querying the map LM with keys and versions.

In a scenario where the append-only Merkle trees have accumulated𝑚 version tuples in the

past, and only 𝑛 tuples are currently active, the overhead of storing truncated Merkle trees is about

(log
2
(𝑚/𝑛) + 1) · 2𝑛. To estimate the overhead for storing truncated Merkle trees after garbage

collection, we consider the roots of Merkle trees are organized in a tree. Thus, we can treat them as

one large Merkle tree. We assume a full binary Merkle tree has 𝑘 levels of inner nodes, accumulated

𝑚 = 2
𝑘
version tuples, with 𝑛 tuples currently active, where 2

𝑙 ≤ 𝑛 < 2
𝑙+1

for some integer 𝑙 . A node

is not truncated if either itself or its sibling has active descendants, so each active tuple corresponds

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

LVMT: An Efficient Authenticated Storage for Blockchain 111:15

to at most two nodes per level. The bottom 𝑘 − 𝑙 − 1 layers have at most 2𝑛 · (𝑘 − 𝑙 − 1) nodes. Since
𝑛 < 2

𝑙+1
and𝑚 = 2

𝑘
imply that (𝑘 − 𝑙 − 1) ≤ log

2
(𝑚/𝑛) then 2𝑛 · (𝑘 − 𝑙 − 1) ≤ 2𝑛 · log

2
(𝑚/𝑛). The

first 𝑙 + 1 levels have 2𝑙+1 − 1 nodes. Since 2𝑙 ≤ 𝑛 then 2
𝑙+1 − 1 ≤ 2𝑛. Therefore, the maximum node

count is (log
2
(𝑚/𝑛) + 1) · 2𝑛. While storing truncated Merkle trees introduces some additional

overhead compared to other authenticated storage systems, it remains a practical approach.

5 IMPLEMENTATION
We implemented the AMT using Arkworks [17], a Rust library for elliptic curve operations. AMT

is built using the pairing parameters BN254 and supports vector commitment in the length of

2
16
. Each entry contains 254 available bits and is divided into six slots with 40 bits. For the public

parameters required by the KZG commitment, we utilize the output from the Perpetual-Powers-of-

Tau ceremony [27], which conducts an MPC protocol among over 70 participants worldwide in

generating secure parameters. Based on the above AMT implementation, we implemented LVMT

in Rust [14]. LVMT is compatible with any backend database that provides a key-value interface as

defined in rust crate “kvdb” [39].

We ported the implementation of MPT from the OpenEthereum client [49], the most popular

high-performance Rust implementation of Ethereum. We also implemented a variant of Rain-

Block [40], which developed an efficient MPT for distributed in-memory systems, by referencing its

implementation [41]. This variant incorporates significant RainBlock features, including caching of

top layers in memory, in-memory construction of the Merkle tree using pointers, and the application

of lazy hash resolution. Unlike RainBlock, our variant stores the bottom layers on local storage

instead of a distributed in-memory system. The two implementations are compatible with the same

interface.

For the implementation of LVMT, we applied several optimizations:

Combining entries in different maps: For a given key, we use three maps KM, VM, and LM
to store its value, version slot index, and the position of the Merkle tree for the recent change,

respectively. In our implementation, we combine these entries into a single key-value pair to save

read and write operation for each key.

Cache the root AMT: The root AMT is frequently accessed. So its leaves and inner nodes are

always stored in memory. The commitments of the AMTs in the second levels are also cached. Each

leaf and inner node of an AMT has two points on the elliptic curve. Given that we set the AMT

height as 16, the root AMT and the commitments of AMTs in the second level store about 200,000

elliptic curve points in memory. Each point takes 96 bytes in our parameter, so roughly 20MB of

memory is needed to store them.

Cache cryptographic parameters: We expedited the commitment update procedure by precom-

puting certain elliptic curve points. For instance, when the input entry at position 𝑖 increases by 𝛿 ,

the commitment can be updated as 𝐶′ = 𝐶 + 𝑃𝑖 , where 𝑃𝑖 = 𝐼𝑖,𝑛 (𝜏) · 𝛿 ·𝐺1. Given that each entry

is divided into six 40-bit slots, when the version number increases, the difference between the

new and the previous version will be one of the following: 1, 240, 280, 2120, 2160, 2200. Thus, LVMT

precomputes 𝑃
(𝑗)
𝑖

= 2
40𝑗 · 𝑃𝑖 for all 0 ≤ 𝑗 ≤ 5 and 1 ≤ 𝑖 ≤ 𝑛. So LVMT can simplify the commitment

update procedure by merely incrementing a precomputed point. In our design, each elliptic curve

point requires 96 𝑏𝑦𝑡𝑒𝑠 of storage. So a node excluding proof maintenance necessitates around

37𝑀𝐵 of memory
1
.

Reduce the coordinates’ conversion time: An elliptic curve point is uniquely represented by its

affine coordinate (𝑥,𝑦) ∈ Z2𝑞 , where 𝑞 is a large prime number. These points can also be represented

1
Note that, although our prototype implementation does not handle proof sharding, a node maintaining a shard of proof

must cache additional parameters, resulting in a higher memory requirement, approximately 650𝑀𝐵.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:16 C. Li, S.M. Beillahi, G.Yang, M. Wu, W. Xu, and F. Long

through projective coordinates (𝑥,𝑦, 𝑧) ∈ Z3𝑞 , which accelerate arithmetic operations by eliminating

division operations within a large prime field. The conversion of these projective coordinates

back to the corresponding affine coordinates is given as (𝑥/𝑧2, 𝑦/𝑧3) ∈ Z2𝑞 . However, a challenge
arises from the fact that a single elliptic curve point corresponds to multiple projective coordinates,

leading to hashing inconsistencies. To address this issue, LVMT always converts the projective

coordinates back to the affine coordinates when computing the hash of a sub-AMT commitment.

This conversion process, however, is computationally intensive, taking approximately 60 𝜇s per

conversion and can substantially impact the speed of write operations. To alleviate this, we applied

batch conversion of all projective coordinates to affine coordinates at the culmination of each block

execution, decreasing the average conversion time to a mere 0.4 𝜇s.

Proof sharding: For multi-level AMTs, the maintenance of auxiliary information is distributed

among blockchain nodes based on key prefixes. Each node is allocated a distinct prefix, enabling it

to identify the specific AMT nodes necessary for handling requests tied to that prefix. Consequently,

when modifications in the data require updates to the AMT, each node is tasked solely with the

upkeep of those AMT nodes that fall within its assigned prefix range.

6 EVALUATION
We evaluate LVMT’s performance and compare it to other authenticated storage systems using

a machine with an Intel i9-10900K CPU, 32 GB DDR4 RAM, and SSD storage. All authenticated

storage systems utilize RocksDB [48] as their backend key-value database.

We assess LVMT under different settings: 1) LVMT without associated information (no proof

shard), 2) LVMT with 1/64 and 1/16 of the associated information (proof sharding). Additionally,

to demonstrate the effects and necessity of proof sharding, we also evaluate the stand-alone

performance of “LVMT with all associated information” for comparisons. In this context, LVMT-r

represents LVMT without any associated information, while LVMT64, LVMT16, and LVMT1 signify

LVMT with 1/64, 1/16, and complete proof sharding, respectively.

In addition to LVMT, we evaluate various authenticated storage systems for comparison. As

previously mentioned, we have ported the MPT in OpenEthereum and have implemented a variant

of RainBlock, which we refer to as MPT and RAIN, respectively. We also examine the Layered

Merkle Patricia Tries (LMPTs) [15] utilized in Conflux [16, 33], a high-performance blockchain,

represented by LMPTs. For reference, we also examine the performance of directly storing data

into the backend, bypassing authenticated storage, denoted as RAW.

End-to-end performance: We assess the end-to-end performance of authenticated storage on

Conflux [16, 33], a high-performance blockchain. To gauge peak performance, we set a large block

size of 20,000 transactions per block. Thus, all authenticated storage systems can finish executing

one block within 0.5 to 5 seconds, aligning with the block generation intervals of major high-

performance blockchains. To emulate the prevalent configuration of contemporary blockchains,

we employ cgroup to restrict the memory consumption of a blockchain node to 16GB and allocate

a 4GB RocksDB cache size. In the experiment, 10,000 senders randomly select addresses from the

receiver space and transfer non-zero balances to them, representing simple payment transactions.

We evaluate receiver spaces with one million, three million, and five million addresses. Conflux

is run for an extended period, ensuring the number of executed transactions is three times larger

than the receiver space.

Figure 2a shows that LVMT-r achieves a maximum throughput of 29669 TPS on average and is

up to 2.7 times faster than MPT and 1.7 times faster than RAIN. We also evaluate the performance

of transactions executing the transfer function of the popular ERC-20 smart contract [42], the most

common transactions on the Ethereum blockchain [20]. As shown in Figure 2b, LVMT-r is up to

2.1 times faster than MPT and 1.5 times faster than LMPT in this workload.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

LVMT: An Efficient Authenticated Storage for Blockchain 111:17

1m 3m 5m
Number of Initialized Keys

0

5

10

15

20

25

30

35

40
Tr

an
sa

ct
io

ns
 p

er
 S

ec
on

d
(x

10
00

)
36

31
28

25
22 20

13

36

29
27

24

18 17

11

35

29
27

23

17 16

11

Throughput for Simple Transactions

RAW
LVMT-r
LVMT64
LVMT16
RAIN
LMPTs
MPT

(a) Transaction execution for balance transfers.

1m 3m 5m
Number of Initialized Keys

0

5

10

15

20

25

Tr
an

sa
ct

io
ns

 p
er

 S
ec

on
d

(x
10

00
)

18

15 15 14
13 12

9

18

15 14 14

11 10

8

18

15
14

13

10
9

7

Throughput for ERC20 Transfers

RAW
LVMT-r
LVMT64
LVMT16
RAIN
LMPTs
MPT

(b) Transaction execution for ERC-20 transfers.

Fig. 2. Throughput of transaction execution

To further study the time usage in execution of one transaction, we breakdown the time usage

into three parts: 1) Execution Engine, i.e., transactions execution without access to the authenticated

storage, 2) Authenticated Structure, i.e., access to the authenticated storage without accesses the

backend database, 3) Backend Database, i.e., accesses to the backend database. Figure 3a shows

the breakdown of time usage in executing random balance transfer transactions with 5 million

receivers. The execution engine takes the same time 16 𝜇s across the different storage settings.

LVMT-r takes a similar time 11 𝜇s with RAW in accessing the backend. It implies LVMT-r almost

eliminates the overhead of the authenticated storage from backend access. LVMT64 and LVMT16

take a similar time to LVMT. MPT requires 42 𝜇s and 33 𝜇s to access the authenticated structure

and the backend database, respectively, which is more than 4x the time used in LVMT-r. As shown

in Table 1, a single elliptic curve multiplication requires 92 𝜇s, which is even slower than MPT.

Therefore, eliminating the expensive elliptic curve operation is necessary to make LVMT practical.

Figure 3b shows the breakdown in executing random ERC20 transfers. The execution engine still

takes the same time across the different storage settings but takes more time than the execution of

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:18 C. Li, S.M. Beillahi, G.Yang, M. Wu, W. Xu, and F. Long

RAW LVMT-r LVMT64 LVMT16 RAIN MPT
Authenticated Storage Systems

0

10

20

30

40

50
Ti

m
e

(u
s)

16

1
8

16

9 8

16
11 9

18
13 13

19 21
17 18

42

32

Time Usage Breakdown for Simple Transactions
Execution Engine
Authenticated Structure
Backend

(a) Time cost breakdown for balance transfers.

RAW LVMT-r LVMT64 LVMT16 RAIN MPT
Authenticated Storage Systems

0
10
20
30
40
50
60
70
80

Ti
m

e
(u

s) 43

1
11

44

9 12

44

13 13

43

15 17

44

26 25

44

56

39

Time Usage Breakdown for ERC20 Transfers
Execution Engine
Authenticated Structure
Backend

(b) Time cost breakdown for ERC20 transfers.

Fig. 3. Break down of the time usage in transaction execution on 5 million receivers.

the balance transfer. This is because the execution of ERC20 transfers requires more I/O accesses

(e.g., loading contract bytecode). All the storage settings take about 20% more time than executing

balance transfers.

This experiment shows that LVMT is able to maintain better throughput than MPT for both

simple payment transactions and the typical ERC-20 smart contract transfer transactions.

Stand-alone performance: We also evaluate the stand-alone performance of authenticated storage

systems in micro-benchmarks. We developed an authenticated storage benchmark tools [14] for

evaluation. Since most transactions in the real world simply read the accounts of the sender and the

receiver and update their balances, we launch a workload of 20 million random “read then write”

operations and commit the changes every 100,000 operations, resembling a block being generated

every several seconds. The authenticated storage is initiated with random key-value pairs whose

size ranges from 10
6
to 10

8
. Both the key and the value are 256-bit strings. We use “1m”, “10m”,

and “100m” to indicate the initialized size 10
6
, 10

7
and 10

8
. Since LVMT needs to allocate version

number slots for new keys, we also evaluate with a “fresh” setting: the storage has no initialization,

and the workload accesses distinct keys.

In addition, to evaluate the performance under the real world access pattern, we extract the I/O

trace on Ethereum, the largest smart contract platform. We choose transactions in 2021 winter,

when Ethereum was going through its latest boom. We replay the Ethereum transactions from block

13,500,000 to block 13,600,000 to recover the I/O operations. These blocks access 22 million distinct

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

LVMT: An Efficient Authenticated Storage for Blockchain 111:19

keys, and make 97 million reads and 54 million writes in total. Each block contains an average

of 1,500 operations. Considering that high-performance authenticated storage can process over

100,000 operations per second, having only 1,500 operations per block results in an unreasonably

short block generation cycle. This considerably impacts RAIN’s optimization efforts for lazy hash

resolutions. To address this issue, we aggregated operations from every 50 blocks into a single

block, making the block size in the real trace workload more closely resemble the size in a random

access workload. We use “real” to denote the workload from real world transactions.

The primary blockchain node like Geth recommands a minimum of 16GB RAM for optimal

performance. We assume that half of this memory is allocated for executing smart contracts that

access authenticated storage systems, while the remaining half accommodates other functionalities.

Consequently, we limited the runtime memory to 8GB using cgroups in our micro-benchmarks.

We observed that authenticated storage systems without inherent caching strategies, such as RAW

and MPT, perform better when provided with a higher RocksDB memory budget. Conversely,

authenticated storage systems incorporating caching strategies, like LVMT and RAIN, show im-

proved performance at a lower memory budget due to the need for an adequate filesystem cache.

To optimize performance, we allocated a 4GB RocksDB cache size for RAW and MPT and a 2GB

cache size for LVMT and RAIN. As the implementation of LMPTs is highly coupled with the back-

end database, and the vague boundary separating the authentication structure from the backend

database posed a challenge to accurately gauge LMPTs in the micro-benchmarks. We removed

LMPTs in micro-benchmarks.

Figure 4a shows the throughput across various workloads. LVMT-r outperforms MPT and RAIN

by at least 353% and 80%, respectively. When handling a shard of auxiliary information, LVMT64

and LVMT16 achieve roughly 80% and 60% of LVMT-r’s throughput across most workloads. LVMT1

consistently exhibits the weakest performance in all workloads, demonstrating the necessity of

proof sharding. Larger-scale tests for LVMT1 were skipped for efficiency, as smaller tests sufficiently

demonstrated its inefficiency. Within the Ethereum real trace workload, the ledger size initially

comprises 4 million keys and eventually grows to 22 million keys. However, all the authenticated

storage systems either outperform or match their performance in the ’1m’ workload, as the real

trace workload provides better access locality than random access.

Figure 4b illustrates the throughput for various ledger sizes. All authenticated storage systems

experience a noticeable performance drop when reaching a specific ledger size threshold. This

occurs because the ledger size surpasses memory limitations, preventing both RocksDB’s cache and

the file system cache from effectively storing ledger data. RAIN and MPT performance begins to

drop at a ledger size of 16 million, whereas LVMT declines at a larger size. LVMT16, LVMT64, and

LVMT-r demonstrate performance degradation starting from ledger sizes of 25 million, 63 million,

and 100 million, respectively. This suggests that LVMT can provide efficient ledger access with a

smaller memory usage.

Read and write amplification: We further study the read and write amplification at the backend

database interface. Here, read amplification represents the ratio of backend read operations to those

on authenticated storage systems’ interfaces, and write operations are defined similarly. Figure 5a

shows the read amplification under the different settings. As the ledger size grows, LVMT-r exhibits

consistent read amplifications. The root AMT contains 2
16
entries, and the second level of AMTs 2

32

input entries in total. Since each entry has five slots for key-value pairs, the root AMT can only store

0.3 million keys, and the second level of AMTs accommodate 21 billion keys. So LVMT-r always

requires two levels of AMT in all these workloads. The read amplification of a key grows linearly

with its level in the AMTs, so it is reasonable for LVMT-r to exhibit similar read amplifications.

In contrast, the read amplification of MPT grows from 2.4 to 4.1. RAIN demonstrates a smaller

read amplification in the Ethereum real trace, indicating that its cache strategy benefits from better

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:20 C. Li, S.M. Beillahi, G.Yang, M. Wu, W. Xu, and F. Long

real fresh 1m 10m 100m
Workloads

0

50

100

150

200

250

300
Op

er
at

io
ns

 p
er

 se
co

nd
 (1

00
0x

)

261

211

154

114

44

173
146

109
96

38

5

238

193

144
126

47

17

180

140

96
68

32

1

53
24

127 5

Throughput of Authenticated Storage Systems
LVMT-r
LVMT64
LVMT16
RAIN
MPT
LVMT1

(a) Throughput under different workloads.

1 1.6 2.5 4 6.3 10 16 25 40 63 100
Keys in Ledger (in millions)

1

2

5

10

20

50

100

200

500

Op
er

at
io

ns
 p

er
 S

ec
on

d
(x

10
00

)

Throughput of Authenticated Storage Systems on Various Ledger Sizes
LVMT-r
LVMT64
LVMT16
RAIN
MPT
LVMT1
RAW

(b) Throughput for various ledger sizes.

Fig. 4. Throughput of authenticated storage systems.

access locality in the real trace. For LVMT with proof shards, the read amplification grows linear

with the size of auxiliary information. LVMT16 maintains four times the auxiliary information than

LVMT64. So the surplus of LVMT16 compared to LVMT-r is four times larger than the surplus of

LVMT64. When accessing the fresh ledger state, allocating slots for the version number increases

the read amplification of LVMT-r by 1.

Figure 5b displays the write amplification. The write amplification of LVMT is similar to the read

amplification. MPT and RAIN have a larger write amplification than read amplification since MPT

nodes are keyed by their hash digests. So each time the storage changes, a write operation and a

deletion operation are applied to the backend.

Figure 6a and 6b present the average sizes of read and write operations on backend, while

figure 7a and 7b provides a more in-depth analysis of data size percentiles for the "100m" workload.

Considering that each MPT node can accommodate up to 16 children, each containing a 32-byte

hash, an MPT node may store around 500 bytes. So MPT’s performance is negatively impacted by

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

LVMT: An Efficient Authenticated Storage for Blockchain 111:21

real fresh 1m 10m 100m
Workloads

0

1

2

3

4

5
Re

ad
s p

er
 O

pe
ra

tio
n

1.21.3
1.6

0.7

2.0 2.02.2

3.0

0.4

2.1

1.01.1
1.7

0.7

2.4

1.01.2

2.0
1.5

3.2

1.0
1.3

2.0
2.3

4.1

Read Amplification of Authenticated Storage Systems
LVMT-r
LVMT64
LVMT16
RAIN
MPT

(a) Read amplification of authenticated storage systems.

real fresh 1m 10m 100m
Workloads

0

2

4

6

8

10

W
rit

es
 p

er
 O

pe
ra

tio
n

1.31.51.9
3.0

4.4

2.02.2
3.0

3.8

5.6

1.01.1
1.7

3.0

4.8

1.01.2
2.0

4.7

6.5

1.01.3
2.0

6.4

8.2

Write Amplication of Authenticated Storage Systems
LVMT-r
LVMT64
LVMT16
RAIN
MPT

(b) Write amplification of authenticated storage systems.

Fig. 5. Read and write amplifications of authenticated storage systems.

the combination of extensive read amplification and large data size per read operation. By caching

the top six layers of MPT in memory, RAIN effectively reduces data sizes for both read and write

operations. In RAIN, the first layer on disk represents the seventh layer of MPT, which can house

roughly 17 million nodes. Thus, at the largest ledger size in our experiment, which consists of

100 million keys, each node only needs to accommodate six children, leading to a 200-byte node.

LVMT-r only accesses elliptic curve points, which are 65 bytes in size. LVMT with proof shards

may load 65-byte elliptic curve points and 192-bytes auxiliary information for an AMT node from

backend. Figure 7 indicates that around 40% of read operations for LVMT16 involve auxiliary

information, while about 10% of LVMT64’s read operations relate to auxiliary information.

Computation intensive transactions:
We now perform an experiment with transactions that involve more computation and storage

accesses. In particular, we use the popular UniswapV2 swap transactions which are on average

requires more than double gas resources compared to ERC20 transfer transactions. For instance, the

Ethereum Gas Tracker shows that the gas limit for UniswapV2 swap is 152809 while the gas limit

for ERC20 transfer is 65000 [21]. This is because the execution of UniswapV2 swap transactions

requires more I/O accesses and more computations to calculate the output amount based on the

input amount.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:22 C. Li, S.M. Beillahi, G.Yang, M. Wu, W. Xu, and F. Long

real fresh 1m 10m 100m
Workloads

0

50

100

150

200

250

300

350
Da

ta
 S

ize
 (b

yt
es

)

31 40
62 53

244

0
18

57
18

204

65
83

114

67

170

65
89

124

73

242

65
90

125125

300

Data Size per Read Operation on Backend
LVMT-r
LVMT64
LVMT16
RAIN
MPT

(a) Data size per read operation

real fresh 1m 10m 100m
Workloads

0
50

100
150
200
250
300
350
400

Da
ta

 S
ize

 (b
yt

es
)

59 73
101

24

320

53 68
98

30

306

65 83
113

14

205

65
89

124

22

278

65
90

125

45

336

Data Size per Write Operation on Backend
LVMT-r
LVMT64
LVMT16
RAIN
MPT

(b) Data size per write operation

Fig. 6. Average data sizes of backend operations

UniswapV2 smart contract is a widely used decentralized finance (DeFi) protocol to exchange

crypto assets [52, 53, 55]. Uniswap is the top decentralized exchange protocol and the total value

locked (TVL) in UniswapV2 smart contract is over 1.2 billions US dollars with daily trading volume

that is over 100 millions US dollars [1].

Uniswap functions as an exchange protocol that consists of liquidity providers and traders. A

liquidity provider supplies a pool of two tokens as a trading pair that can be exchanged, i.e., creating
an exchange market between the trading pair tokens. A trader can then exchange one type of token

to the pool and receive the other token out of the pool. Uniswap leverages a constant product

function to determine asset prices between the two tokens in the pool by computing the relative

number of the two tokens in the pool taking to account a small percent as reward for the liquidity

pool provider. Assuming for a given liquidity pool with an amount 𝑋𝐴 of a liquidity token 𝐴 and an

amount 𝑌𝐵 of another token 𝐵, the equation 𝑋𝐴 ×𝑌𝐵 = 𝑘 , where 𝑘 is a constant number determines

asset prices. For instance, the amount 𝑂𝐵 of token 𝐵 a trader receives for selling an amount 𝐼𝐴 of

token 𝐴 to the liquidity pool is computed as follows (we assume for simplicity that the reward for

liquidity pool provider is zero).

𝑂𝐵 = 𝑌𝐵 −
𝑘

𝑋𝐴 + 𝐼𝐴
(2)

In the standard UniswapV2, we can distinguish between two types of swap transactions: a swap

between the native ETH and an ERC20 token (e.g., USDT stable coin) and a swap between two

ERC20 tokens (e.g., USDT and USDC stable coins). For the former, UniswapV2 uses wrapped ETH

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

LVMT: An Efficient Authenticated Storage for Blockchain 111:23

10 20 30 40 50 60 70 80 90
Percentiles

0

50
70

100

200

300

500
700

Da
ta

 S
ize

 (B
yt

es
)

Backend Read Operations: Data Size Distribution
LVMT-r
LVMT64
LVMT16
RAIN
MPT

(a) Data size distribution of backend read operations

10 20 30 40 50 60 70 80 90
Percentiles

0

50
70

100

200

300

500
700

Da
ta

 S
ize

 (B
yt

es
)

Backend Write Operations: Data Size Distribution
LVMT-r
LVMT64
LVMT16
RAIN
MPT

(b) Data size distribution of backend write operations

Fig. 7. Data size distribution of backend operations

1m 3m 5m
Number of Initialized Keys

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Tr
an

sa
ct

io
ns

 p
er

 S
ec

on
d

(x
10

00
)

3.2
2.82.82.72.72.6

2.4

3.2
2.82.82.62.5

2.1
1.9

3.2
2.72.6

2.2

1.5
1.3

1.0

Throughput for Uniswap

RAW
LVMT-r
LVMT64
LVMT16
RAIN
LMPTs
MPT

Fig. 8. Throughput of authenticated storage systems for Uniswap native ETH and an ERC20 token swap
under different workloads

(WETH) smart contract that is ERC20 compatible. To swap between native ETH and an ERC20 to-

ken, UniswapV2 has four exchange functions swapExactTokensForETH, swapExactETHForTokens,
swapTokensForExactETH, and swapETHForExactTokens. To swap between two ERC20 tokens,

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:24 C. Li, S.M. Beillahi, G.Yang, M. Wu, W. Xu, and F. Long

RAW LVMT-r LVMT64 LVMT16 RAIN MPT
Authenticated Storage Systems

0
50

100
150
200
250
300
350
400

Ti
m

e
(u

s)

295

2 13

326

11 15

325

15 17

325

18 22

305

34 30

302

60 59

Time Usage Breakdown for Uniswap (1m)

Execution Engine
Authenticated Structure
Backend

(a) Time cost breakdown for 1m workload.

RAW LVMT-r LVMT64 LVMT16 RAIN MPT
Authenticated Storage Systems

0
50

100
150
200
250
300
350
400

Ti
m

e
(u

s)

298

2 16

326

13 15

324

16 20

325

20 41

311

38 46

316

67

156

Time Usage Breakdown for Uniswap (3m)

Execution Engine
Authenticated Structure
Backend

(b) Time cost breakdown for 3m workload.

RAW LVMT-r LVMT64 LVMT16 RAIN MPT
Authenticated Storage Systems

0

100

200

300

400

500

600

700

Ti
m

e
(u

s)

299

2 16

329

13 33

328

17 38

330

23
94

338

43

292
339

74

610

Time Usage Breakdown for Uniswap (5m)
Execution Engine
Authenticated Structure
Backend

(c) Time cost breakdown for 5m workload.

Fig. 9. Time cost breakdown of authenticated storage systems for Uniswap native ETH and an ERC20 token
swap under different workloads.

UniswapV2 has two exchange functions swapExactTokensForTokens and swapTokensForExactTokens.
The functions swapExactTokensForETH, swapExactETHForTokens, and swapExactTokensForTokens
sell a specific amount of an ERC20 token or ETH fixed by the caller for an amount of another ERC20

token or ETH (the amount is determined using Uniswap exchange formula). On the other hand, the

functions swapTokensForExactETH, swapETHForExactTokens, and swapTokensForExactTokens
buy a specific amount of an ERC20 token or ETH fixed by the caller.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

LVMT: An Efficient Authenticated Storage for Blockchain 111:25

Figures 8 and 9 show the performance of transactions executing a swap between ETH and an

ERC20 token. In this experiment, senders randomly call one of the functions swapExactTokensForETH,
swapExactETHForTokens, swapTokensForExactETH, and swapETHForExactTokens. Figure 8 shows
the TPS throughput across various workloads. RAW achieves the maximum throughput followed by

LVMT-r achieving a throughput of 2760 TPS on average. Figure 8 shows that the TPS throughput

for MPT, LMPT, and RainBlock degrades significantly for a ledger size of 5 million while LVMTs

maintain a steady TPS throughput. Figure 9a shows the time cost breakdown for a ledger size of

1 million. It shows that the execution engine takes significantly more time compared to ERC20

and balance transfer since Uniswap functions involve more computation and tokens transfers.

Similar to before, we observe that LVMT-r and RAW take almost same time to access the backend.

MPT requires around 60 𝜇s to access the authenticated structure and the backend database which is

4x the time used in LVMT-r. Figure 9b shows that MPT starts reaching saturation for a ledger size

of 3 million. In particular, the time required for MPT to access the backend database deteriorates

from 59 𝜇s to 156 𝜇s while for LVMT-r it is stable at 15 𝜇s. Figure 9c shows that RainBlock starts

reaching saturation for a ledger size of 5 million where the time required for RainBlock to access

the backend database deteriorates from 41 𝜇s to 292 𝜇s. Figure 9c also shows that the time required

for MPT to access the backend database deteriorates further from 156 𝜇s to 610 𝜇s.

1m 3m 5m
Number of Initialized Keys

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Tr
an

sa
ct

io
ns

 p
er

 S
ec

on
d

(x
10

00
)

3.4
3.13.02.9

2.62.4
2.2

3.4

2.82.7

2.2

1.31.2
0.8

2.9

1.71.7
1.3

0.90.9
0.6

Throughput for Uniswap

RAW
LVMT-r
LVMT64
LVMT16
RAIN
LMPTs
MPT

Fig. 10. Throughput of authenticated storage systems for Uniswap two ERC20 tokens swap under different
workloads.

In Figures 10 and 11, we show the performance of transactions executing a swap between two

ERC20 tokens. In this experiment, senders randomly select one of the two functions swapExactToke-
nsForTokens and swapTokensForExactTokens to call. Similar to before, in Figure 10 we measure

the TPS throughput across various workloads. RAW achieves the maximum throughput of 3230 TPS

on average followed by LVMT-r achieving a throughput of 2530 TPS on average. Figure 10 shows

that the TPS throughput for MPT, LMPT, and RainBlock start degrading significantly for a ledger

size of 3 million while LVMTs are still maintaining a steady TPS throughput for a ledger size of 3

million. Afterwards, at a ledger size of 5 million, the TPS throughput for LVMTs start degrading

significantly. Figure 11a shows the time cost breakdown for ERC20 tokens swap transactions for a

ledger size of 1 million. Similar to the previous experiment, it shows that the execution engine for

ERC20 tokens swap takes significantly more time compared to ERC20 and balance transfer. Similar

to before, LVMT-r and RAW take almost similar time to access the backend. MPT requires around 94

and 90 𝜇s to access the authenticated structure and the backend database, respectively, which are

over 4x the times used in LVMT-r. Figure 11b shows that MPT starts reaching saturation for a ledger

size of 3million. In particular, the time required for MPT to access the backend database deteriorates

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:26 C. Li, S.M. Beillahi, G.Yang, M. Wu, W. Xu, and F. Long

RAW LVMT-r LVMT64 LVMT16 RAIN MPT
Authenticated Storage Systems

0

50

100

150

200

250

300

350
Ti

m
e

(u
s)

267

3
21

283

19 22

285

23 25

282

28 33

278

53 49

277

94 90

Time Usage Breakdown for Uniswap (1m)

Execution Engine
Authenticated Structure
Backend

(a) Time cost breakdown for 1m workload.

RAW LVMT-r LVMT64 LVMT16 RAIN MPT
Authenticated Storage Systems

0

200

400

600

800

1000

Ti
m

e
(u

s)

269

3 24

289

19 44

289

27 49

287

33
137

307

61

410
336

113

865

Time Usage Breakdown for Uniswap (3m)
Execution Engine
Authenticated Structure
Backend

(b) Time cost breakdown for 3m workload.

RAW LVMT-r LVMT64 LVMT16 RAIN MPT
Authenticated Storage Systems

0

200

400

600

800

1000

1200

1400

Ti
m

e
(u

s)

276

3 66

307

20

254 304

32

252 311

37

403
328

67

687

358

122

1191

Time Usage Breakdown for Uniswap (5m)
Execution Engine
Authenticated Structure
Backend

(c) Time cost breakdown for 5m workload.

Fig. 11. Time cost breakdown authenticated storage systems for Uniswap two ERC20 tokens swap under
different workloads.

from 90 𝜇s to 865 𝜇s while for LVMT-r it reached 44 𝜇s. Interestingly, Figure 11b also shows that

RainBlock starts reaching saturation for a ledger size of 3 million. In particular, the time required

for RainBlock to access the backend database deteriorates from 49 𝜇s to 410 𝜇s. Figure 11c shows

that LVMT-r as well starts reaching saturation for a ledger size of 5million where the time required

for LVMT-r to access the backend database deteriorates from 44 𝜇s to 254 𝜇s. Figure 9c also shows

that the times required for MPT and RainBlock to access the backend database deteriorate further

from 865 𝜇s to 1191 𝜇s and 410 to 687, respectively.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

LVMT: An Efficient Authenticated Storage for Blockchain 111:27

7 DISCUSSIONS
State validation: Ensuring the validity and integrity of on-disk data is crucial for the development

of secure and reliable blockchain systems. However, due to performance consideration, blockchain

nodes do not proactively verify the validity and integrity of the on-disk local state, despite the

MPT’s capability to perform such checks during ledger operations. Instead, the consensus protocol

maintains integrity by requiring nodes to validate a block by comparing its state root with their own

calculations, effectively mitigating the risks posed by data corruption from hardware failures or

malicious tampering. Consequently, blocks with incorrect state roots are deemed invalid, and nodes

with mismatched data are treated as Byzantine Fault nodes, whose adverse effects are nullified by

the consensus mechanism. Therefore, although LVMT without proof sharding does not support

local data validation capabilities compared to MPT, the overall functionality of a blockchain system

remains unaffected.

In practical scenarios, certain participants, such as mining pools, wield significantly greater

consensus weight than others. For instance, prior to Ethereum 2.0, the top three Ethereum mining

pools held over 50% of the network’s mining power. Data corruption turning such influential nodes

into faulty ones could severely compromise blockchain security. A mitigation strategy involves

these participants operating multiple blockchain nodes across different machines to cross-verify

the state root. More details fall outside the scope of this paper.

Influence on other blockchain system components: Authenticated storage primarily influ-

ences the efficiency of transaction execution within the execution module, which may indirectly

affect other components of the blockchain system. As LVMT does not bring additional internode

communication, it exerts minimal influence on the network module. This discussion centers on the

influence on the consensus module.

In a typical blockchain architectures, the consensus module upon receiving and validating a block,

it then processes all transactions contained within to validate the state root’s integrity. Certain

blockchain frameworks, such as Conflux, segregate block validation from transaction processing.

Conflux employs a deferred execution strategy, introducing a deferred state root representing the

ledger state of five blocks prior, rather than the state root following the execution of the current

block. This approach allows for the asynchronous processing of transactions in parallel with block

validation in the consensus module.

Regardless of the adopted mechanism, the consensus module’s primary concern with respect

to the execution module is the time required to complete transaction processing in one block.

Consequently, an execution module that can expedite transaction processing will not undermine

the performance metrics of the consensus module, such as the confirmation delay. Thus, the

evaluation of LVMT’s performance is focused on its contribution to the acceleration of transaction

execution.

Performance metrics of authenticated storage systems: The primary performance metric

in authenticated storage systems is their impact on transaction execution time. Therefore, our

evaluation is centered on assessing the efficiency of various authenticated storage solutions in

handling read and write operations. In addition, authenticated storage systems feature other

performance indicators, including proof generation time, verification time, and proof size, which

are relevant to serving light nodes. Although these metrics do not directly influence the core

operations of the system, we offer a brief examination here.

For LVMT, the proof consists of 𝑡 Merkle paths and 𝑡 AMT proofs, with 𝑡 denoting the level

at which the queried key is located within LVMT. The Merkle path contains about log
2
𝑁 nodes,

where 𝑁 is the number of storage entries within a block. An AMT proof comprises 𝑘 elliptic curve

points, each approximately 64 bytes in size and 𝑘 denoting the height of AMT.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:28 C. Li, S.M. Beillahi, G.Yang, M. Wu, W. Xu, and F. Long

Taking an example with 10 million random keys and each block modifying 10,000 storage entries.

We set the parameter 𝑘 to 16, aligning with our evaluation criteria. The MPT proof navigates

through 6 MPT branch nodes, each around 500 bytes, leading to a total proof size of approximately

3kB. In contrast, LVMT utilizes 2 levels, with each Merkle path traversing 14 nodes, each 32 bytes,

resulting in a combined Merkle path size of 2 × 14 × 32 bytes, roughly 1kB. The aggregate size

of two AMT proofs is 2 × 16 × 64 bytes, or about 2kB. Thus, the overall proof size of LVMT is

comparable to that of MPT, being of the same order of magnitude.

Proof generation in both MPT and LVMT systems does not involve cryptographic operations.

During proof verification, each 32-byte Merkle node data incurs a hashing operation, and each 64-

byte elliptic curve point necessitates an elliptic curve addition, with both operations approximately

taking 1 𝜇s. Hence, given the similar proof sizes of LVMT and MPT, their proof verification times

are also comparable.

LVMT incurs higher overhead for non-existence proofs, which necessitate demonstrating that

all potential slots for the queried key are occupied by other keys. For an LVMT with 2 levels and

each AMT leaf comprising 5 slots (as shown in Figure. 1a), a non-existence proof could involve up

to 10 proofs pertaining to other keys. The AMT component of these proofs stays the same, since

these keys share a common AMT path. Together, they add up to only 2kB. However, the Merkle

path segment is different for each key, which could result in a total proof size of about 10×1kB.
Consequently, the overall proof size for non-existence in LVMT could be about four times larger

than that of MPT.

Safeguarding performance against client-induced load disparities: Since LVMT utilizes

the hash value of application-layer keys as its identifiers within the Authenticated Merkle Tree

(AMT) hierarchy, it inherently benefits from a uniform distribution. However, this uniformity is

susceptible to disruption by a malicious client who might submit tasks that exclusively alter specific

keys, consequently impairing the performance of the LVMT. Here, we discuss how LVMT mitigates

this type of attack.

The recursive approach used by LVMT to dynamically scale with the state growth may seem to

enable malicious actors to attempt attacking LVMT through transactions that cause deep updates

resulting in unnecessary growth in the AMT hierarchy of LVMT. However, in practice the cost of

lunching such attack is too expensive. This is because the key security mechanism in the AMT is

the keccak256 hashes of the keys in the application layer. Thus, if a malicious client attempts to

cause a deep AMT hierarchy growth, it needs to find several application-layer keys whose hashes

share the same prefix. In particular, it must find at least 6 inputs (each level stores 5 keys) whose

hashes have the same 16n-bit prefix. For instance, if a malicious client wants to cause the AMT

hierarchy to grow to the n+1-th level it will take them around 2
(5×16𝑛

6
)
tries. For example, the cost

of causing the AMT hierarchy to grow to reach the 4-th level and 5-th level requires around 2
40

tries and 2
53
tries, respectively.

Although attackers cannot compromise the overall efficiency by deepening the hierarchy of the

AMTs, they can skew the distribution of access hotspots. For example, by repetitively accessing

keys within a small range, attackers can concentrate the proof shard maintenance on a few nodes,

thus disrupting feature of proof sharding, which relies on allocating proof shards according to key

prefixes. This attack also affects other systems that distribute the task of maintaining authenticated

storage across multiple nodes based on key prefix ranges, such as RainBlock. For LVMT, this attack

can be resolved by load-balancing in an undisclosed way. Since AMT nodes can be maintained in

parallel and all proof shardings are managed by a singular entity (typically a blockchain service

provider), the maintainer has the option to distribute the workload across multiple machines in

any way. The workload distribution can be assigning the maintenance of AMT nodes to different

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

LVMT: An Efficient Authenticated Storage for Blockchain 111:29

machines randomly, rather than by their key prefixes. Furthermore, algorithms that adjust sharding

ranges based on workload fluctuations can offer additional mitigation against this challenge.

8 RELATEDWORKS
Improved MPT structures: mLSM proposes to maintain multiple levels of MPTs [44]. The most

recent updates are in the lowest level (level 0). The key-value pairs in a lower level will be merged

to higher levels periodically. LMPTs proposes maintaining three MPTs, one large MPT containing

old state and two small MPTs containing recent state changes [15]. LMPTs periodically merges

small MPTs into large ones. For both mLSM and LMPTs, the concatenation of the Merkle roots of

all the MPTs becomes the commitment for the ledger state.

Both LVMT and mLSM employ multi-level structures to minimize write amplification, but their

approaches differ. mLSM maintains shallow top-level trees by regularly merging entries from the

top-level Merkle trees into lower levels. Since write operations in mLSM only affect the top-level

trees, the reduced depth decreases overall costs. LMPTs adopt a similar strategy, keeping a shallow

delta MPT and periodically merging it into the snapshot. Conversely, LVMT’s multi-level structure

is akin to a tree, where each AMT serves as a node. When a write operation modifies an element in

a lower-level AMT, all AMTs on the path from the root to the target AMT must be updated. With

each AMT capable of accommodating up to 65,536 children, the high degree effectively reduces

LVMT’s overall depth, thus lowering write amplification.

Their techniques reduce the number of disk I/O operations on the critical path because the

recently accessed state will be stored into MPTs with smaller depth, and the merge of MPTs can

happen in a background thread. In contrast, LVMT almost eliminate unnecessary read amplification

in practice. Our results show that when integrated end-to-end into Conflux, LVMT outperforms

LMPTs by up to 2.5x. The mLSM paper only contains its conceptual design without implementation

and evaluation [44]. It is unclear how mLSM would perform end-to-end with a blockchain in

practice.

Parallelize storage I/O: RainBlock [40] introduces three different nodes in a blockchain system

to accelerate the transaction execution: the storage prefetchers, the miners executing transactions,

and the storage nodes. When executing transactions, the miners obtain needed data from multiple

prefetchers and send the updates to multiple storage nodes. Each storage node maintains a shard of

MPTs in memory. RainBlock changes the local storage I/O to network distributed storage I/O and

benefits from the parallel I/O and in-memory storage. To reduce the read latency of network storage,

RainBlock introduces I/O prefetchers and requires the miners to attach all the accessed key-value

pairs and the witnesses (MPT nodes) when broadcasting blocks. RainBlock reports the average size

of witnesses per transaction is 4 KB and their optimizations reduce the size of witnesses by 95% ,

so the additional network message per transaction is about 200 bytes, two times of a transaction.

However, the inefficient usage of networks brings a bottleneck to a high-performance blockchain

system [26]. RainBlock also suffers attacks in data availability. Since in-memory storage is costly,

the number of replicas in RainBlock is much less than in Ethereum. As a comparison, LVMT does

not introduce additional network bandwidth consumption and data availability risk. Even if proof

of shard in LVMT is lost, the other nodes can recover the auxiliary information of an AMT in

minutes.

Both RainBlock and LVMT employ the sharding concept, but with different targets. RainBlock

divides the ledger into multiple shards, preventing single nodes from accessing the entire ledger.

To address this, RainBlock devised complex protocols between the prefetchers handling ledger

reads and the miners executing transactions. Conversely, LVMT utilizes sharding solely to maintain

auxiliary information for generating proof, allowing nodes to access the full ledger data during

transaction execution. The proof sharding is mainly handled by blockchain node API providers.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:30 C. Li, S.M. Beillahi, G.Yang, M. Wu, W. Xu, and F. Long

When users query a key, providers must direct the query to the corresponding node along with the

relevant proof.

Another similarity between our RainBlock implementation and LVMT is caching top-level nodes.

By default, RainBlock caches six layers of MPT nodes, while LVMT caches a single layer of AMT.

As LVMT’s nodes having a significantly higher degree than MPT (65,536 vs. 16), LVMT can use less

memory to accommodate more entries in the first layer beneath the cached nodes.

Vector commitment for data sharding: Several vector commitment protocols [13, 24, 28, 30, 47,

50] have been proposed to reduce the proof size, support revealing elements in batch, or make the

commitment efficiently updatable under some requirements. Some research also considers utilizing

the vector commitment for data sharding on blockchain. Alin et al. [50] use KZG commitment

protocol [28] to replace the underlying Merkle tree for data sharding. Unlike LVMT, the goal of this

technique is not to improve the throughput but to reduce the data size of the blockchain storage. It

requires the clients to maintain the proofs for their own data, keep updating the proof, and attach

the values and proofs for the accessed storage in a transaction. Each client needs to be online and

update the proofs of all of its data each time a write operation happens on the blockchain. Note that

this protocol takes 𝑂 (𝑛) time to generate proof or maintain proofs for all data, which costs 𝑂 (𝑛)
time to add a new key-value pair. It is therefore not designed for a high throughput blockchain

system. When thousands of transactions are executed on the blockchain per second, a client cannot

maintain its proofs efficiently.

Pointproofs [24] proposes an aggregatable and maintainable vector commitment protocol that

can maintain the auxiliary information for proofs in 𝑂 (log𝑛) time (like AMT) and reveal any

𝑘-element subset of elements in 𝑂 (𝑘) time with a batched proof. Pointproofs allows a consensus

node to generate a batched proof for all the accessed key value pairs during block execution, so a

node without the whole ledger can verify the correctness of execution. However, for every 1024

transactions, Pointproofs takes 5 seconds to maintain the auxiliary information for proofs, which

cannot match the requirements in a high throughput blockchain system.

Accumulators: Accumulators are cryptographic primitives that commit a set of elements to a

short digest (commitment) while supporting operations like addition, deletion, membership proof,

and non-membership proof. Merkle trees are one example of accumulators. A recent study [7]

designed an RSA accumulator that supports batch operations and stores UTXO sets for a blockchain,

with commitments updated in constant time.

In a zk-rollup blockchain [19], it is crucial to convince a light client with a SNARK proof [6]

that the ledger root is updated correctly in a given sequence of operations. Ozdemir et al. replaced

Merkle trees with RSA accumulators to accelerate SNARK proof generation [38]. Although RSA

accumulators require 𝑂 (𝑛) time to generate a proof or update proofs for all elements, the time

savings in SNARK proof generation outweigh the time spent in accumulator proof generation.

However, in a high-performance authenticated storage, operations are processed in microseconds,

rendering proof updates that require milliseconds per operation as relatively costly.

9 CONCLUSION
LVMT significantly reduces the disk I/O amplifications associated with each blockchain state access.

When integrated into a high performance blockchain, LVMT has up to 2.7x higher throughput

than the standard MPT data structure. The promising results of LVMT demonstrate the potential of

eliminating the performance bottleneck at the storage layer with vector commitment schemes.

Currently, the design of vector commitment protocols for blockchain authenticated storage

systems targets two different objectives: first, to boost transaction throughput by expediting read

and write operations, which is vital for the execution of smart contracts, as demonstrated by LVMT;

and second, to decrease the cost of proof verification, thereby facilitating efficient proof of ledger

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

LVMT: An Efficient Authenticated Storage for Blockchain 111:31

state in use cases like data sharing, cross-chain and layer-2 networks, with PointProofs [24] being

examples.

Although these technologies have made significant strides in their respective areas, there remains

an absence of a protocol that seamlessly integrates rapid data access with efficient verification

processes. LVMT stands out for its read and write performance, yet it falls behind in comparison to

protocols that offer more succinct proofs and the ability to aggregate proofs for multiple keys. Con-

versely, protocols that are tailored for verification efficiency do not resolve challenges that LVMT

overcomes, such as scalability issues and heavy cryptographic operations. This dichotomy under-

scores a compromise between operational efficiency and the simplicity of verification, suggesting a

potential research avenue aimed at optimizing both dimensions.

ACKNOWLEDGEMENTS
We express our gratitude to Peilun Li for his detailed guidance on the Conflux test framework,

facilitating our end-to-end evaluations. We also appreciate the insightful suggestions from our

shepherd, Michael Wei, and the anonymous reviewers from EuroSys, S&P, and OSDI. Their critique

and suggestions considerably improved our evaluation design and enriched our protocol discussion.

This research has received support from National Key Research and Development Project of China

(Grant No. 2023YFB2704900), Shanghai Committee of Science and Technology, China (Grant No.

21511104600, 20DZ2221800), National Natural Science Foundation of China (Grant No. U2268202),

and a gift fund from Nanjing Turing AI Institute.

REFERENCES
[1] 0xngmi. 2023. DefiLlama - DeFi Dashboard. https://defillama.com.

[2] Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath. 2019. Prism: Deconstructing

the blockchain to approach physical limits. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. 585–602.

[3] Paulo SLM Barreto, Ben Lynn, and Michael Scott. 2002. Constructing elliptic curves with prescribed embedding

degrees. In Proceedings of the 2002 International conference on security in communication networks. Springer, 257–267.
[4] Paulo SLM Barreto and Michael Naehrig. 2005. Pairing-friendly elliptic curves of prime order. In Proceedings of the

2005 International Workshop on Selected Areas in Cryptography. Springer, 319–331.
[5] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. 2014. Succinct Non-Interactive Zero Knowledge

for a von Neumann Architecture. In Proceedings of the 23rd USENIX Security Symposium. 781–796.

[6] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. 2012. From extractable collision resistance to succinct

non-interactive arguments of knowledge, and back again. In Proceedings of the 3rd Innovations in Theoretical Computer
Science Conference. 326–349.

[7] Dan Boneh, Benedikt Bünz, and Ben Fisch. 2019. Batching techniques for accumulators with applications to IOPs and

stateless blockchains. In Proceedings of the 2019 Annual International Cryptology Conference. Springer, 561–586.
[8] Sean Bowe. 2017. BLS12-381: New zk-SNARK elliptic curve construction. https://z.cash/blog/new-snark-curve.

[9] Sean Bowe, Ariel Gabizon, and Matthew D Green. 2018. A multi-party protocol for constructing the public parameters

of the Pinocchio zk-SNARK. In Proceedings of the 2018 International Conference on Financial Cryptography and Data
Security. Springer, 64–77.

[10] Sean Bowe, Ariel Gabizon, and Ian Miers. 2017. Scalable multi-party computation for zk-SNARK parameters in the

random beacon model. Cryptology ePrint Archive (2017).
[11] Vitalik Buterin. 2023. Ethereum Whitepaper. https://ethereum.org/en/whitepaper/.

[12] Vitalik Buterin and Virgil Griffith. 2017. Casper the Friendly Finality Gadget. arXiv preprint arXiv:1710.09437 (2017).

[13] Dario Catalano and Dario Fiore. 2013. Vector commitments and their applications. In Proceedings of the 2013 International
Workshop on Public Key Cryptography. Springer, 55–72.

[14] Chenxing Li and Sidi Mohamed Beillahi and Guang Yang and Ming Wu and Wei Xu and Fan Long. 2023. Authenticated

Storage Benchmarks. https://github.com/ChenxingLi/authenticated-storage-benchmarks.

[15] Jemin Andrew Choi, Sidi Mohamed Beillahi, Peilun Li, Andreas Veneris, and Fan Long. 2022. LMPTs: Eliminating

Storage Bottlenecks for Processing Blockchain Transactions. In Proceedings of the 2022 International Conference on
Blockchain and Cryptocurrency. IEEE.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://defillama.com
https://z.cash/blog/new-snark-curve
https://ethereum.org/en/whitepaper/
https://github.com/ChenxingLi/authenticated-storage-benchmarks

111:32 C. Li, S.M. Beillahi, G.Yang, M. Wu, W. Xu, and F. Long

[16] Conflux Network. 2023. Conflux Rust for Authenticated Storage Benchmarks. https://github.com/Conflux-Chain/

conflux-rust/tree/asb-e2e.

[17] Arkworks contributors. 2022. arkworks zkSNARK ecosystem. https://arkworks.rs.

[18] Ethereum. 2023. Merkle Patricia Tree. https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-

merkle-trie/.

[19] Ethereum. 2023. Zero-Knowledge Rollups. https://ethereum.org/en/developers/docs/scaling/zk-rollups/.

[20] Etherscanners. 2023. ERC-20 Top tokens. https://etherscan.io/tokens.

[21] Etherscanners. 2023. Ethereum Gas Tracker. https://etherscan.io/gastracker.

[22] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. 2016. Bitcoin-NG: A Scalable Blockchain

Protocol. In Proceedings of the 13th USENIX Symposium on Networked Systems Design and Implementation. 45–59.
[23] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. 2017. Algorand: Scaling byzantine

agreements for cryptocurrencies. In Proceedings of the 26th Symposium on Operating Systems Principles. ACM, 51–68.

[24] Sergey Gorbunov, Leonid Reyzin, Hoeteck Wee, and Zhenfei Zhang. 2020. Pointproofs: Aggregating proofs for multiple

vector commitments. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security.
2007–2023.

[25] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers. 2018. Updatable and universal common

reference strings with applications to zk-SNARKs. In Proceedings of the 2018 Annual International Cryptology Conference.
Springer, 698–728.

[26] Yilin Han, Chenxing Li, Peilun Li, Ming Wu, Dong Zhou, and Fan Long. 2020. Shrec: Bandwidth-Efficient Transaction

Relay in High-Throughput Blockchain Systems. In Proceedings of the 11th ACM Symposium on Cloud Computing
(Virtual Event, USA) (SoCC ’20). Association for Computing Machinery, New York, NY, USA, 238–252. https://doi.org/

10.1145/3419111.3421283

[27] Koh Wei Jie. 2021. Perpetual Powers of Tau. https://github.com/weijiekoh/perpetualpowersoftau.

[28] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. 2010. Constant-size commitments to polynomials and their

applications. In Proceedings of the International Conference on the Theory and Application of Cryptology and Information
Security. Springer, 177–194.

[29] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta, and Bryan Ford. 2018. Omniledger:

A secure, scale-out, decentralized ledger via sharding. In Proceedings of the 2018 IEEE Symposium on Security and
Privacy. IEEE, 583–598.

[30] Russell WF Lai and Giulio Malavolta. 2019. Subvector commitments with application to succinct arguments. In Annual
International Cryptology Conference. Springer, 530–560.

[31] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. 2015. Inclusive block chain protocols. In Proceedings of the
2015 International Conference on Financial Cryptography and Data Security. Springer, 528–547.

[32] Ao Li, Jemin Andrew Choi, and Fan Long. 2020. Securing smart contract with runtime validation. In Proceedings of the
41st ACM SIGPLAN International Conference on Programming Language Design and Implementation, PLDI 2020, London,
UK, June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 438–453. https://doi.org/10.1145/3385412.

3385982

[33] Chenxing Li, Peilun Li, Dong Zhou, Zhe Yang, Ming Wu, Wei Xu, Fan Long, and Andrew Yao. 2020. A Decentralized

Blockchain with High Throughput and Fast Confirmation. In Proceedings of the 2020 USENIX Annul Technical Conference.
USENIX.

[34] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and Prateek Saxena. 2016. A Secure

Sharding Protocol For Open Blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (Vienna, Austria) (CCS ’16). ACM, New York, NY, USA, 17–30. https://doi.org/10.1145/

2976749.2978389

[35] David Mazieres. 2015. The stellar consensus protocol: A federated model for internet-level consensus. Stellar
Development Foundation 32 (2015), 1–45.

[36] Satoshi Nakamoto. 2009. Bitcoin: A peer-to-peer electronic cash system. http://bitcoin.org/bitcoin.pdf.

[37] Gleb Naumenko, Gregory Maxwell, Pieter Wuille, Alexandra Fedorova, and Ivan Beschastnikh. 2019. Erlay: Efficient

Transaction Relay for Bitcoin. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. 817–831.

[38] Alex Ozdemir, Riad Wahby, Barry Whitehat, and Dan Boneh. 2020. Scaling verifiable computation using efficient set

accumulators. In 29th USENIX Security Symposium (USENIX Security 20). 2075–2092.
[39] Parity Technologies. 2020. Crate kvdb. https://docs.rs/kvdb/0.4.0/kvdb/.

[40] Soujanya Ponnapalli, Aashaka Shah, Souvik Banerjee, Dahlia Malkhi, Amy Tai, Vijay Chidambaram, and Michael Wei.

2021. RainBlock: Faster Transaction Processing in Public Blockchains. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21). 333–347.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://github.com/Conflux-Chain/conflux-rust/tree/asb-e2e
https://github.com/Conflux-Chain/conflux-rust/tree/asb-e2e
https://arkworks.rs
https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/
https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://etherscan.io/tokens
https://etherscan.io/gastracker
https://doi.org/10.1145/3419111.3421283
https://doi.org/10.1145/3419111.3421283
https://github.com/weijiekoh/perpetualpowersoftau
https://doi.org/10.1145/3385412.3385982
https://doi.org/10.1145/3385412.3385982
https://doi.org/10.1145/2976749.2978389
https://doi.org/10.1145/2976749.2978389
http://bitcoin.org/bitcoin.pdf
https://docs.rs/kvdb/0.4.0/kvdb/

LVMT: An Efficient Authenticated Storage for Blockchain 111:33

[41] Ponnapalli, Soujanya and Shah, Aashaka and Banerjee, Souvik and Malkhi, Dahlia and Tai, Amy and Chidambaram,

Vijay and Wei, Michael. 2023. RainBlock Protocol. https://github.com/RainBlock/rainblock-protocol.

[42] Ethereum Improvement Proposals. 2015. EIP-20: Token Standard. https://eips.ethereum.org/EIPS/eip-20.

[43] Pandian Raju, Soujanya Ponnapalli, Evan Kaminsky, Gilad Oved, Zachary Keener, Vijay Chidambaram, and Ittai

Abraham. 2018. mLSM: Making Authenticated Storage Faster in Ethereum. In 10th USENIX Workshop on Hot Topics in
Storage and File Systems, HotStorage 2018, Boston, MA, USA, July 9-10, 2018, Ashvin Goel and Nisha Talagala (Eds.).

USENIX Association. https://www.usenix.org/conference/hotstorage18/presentation/raju

[44] Pandian Raju, Soujanya Ponnapalli, Evan Kaminsky, Gilad Oved, Zachary Keener, Vijay Chidambaram, and Ittai

Abraham. 2018. mLSM: Making Authenticated Storage Faster in Ethereum. In Proceedings of the 10th USENIX Workshop
on Hot Topics in Storage and File Systems. 10.

[45] Yonatan Sompolinsky, Shai Wyborski, and Aviv Zohar. 2018. PHANTOM and GHOSTDAG: A scalable generalization

of nakamoto consensus. Cryptology ePrint Archive 2018/104 (2018).
[46] Yonatan Sompolinsky and Aviv Zohar. 2015. Secure high-rate transaction processing in bitcoin. In Proceedings of the

2015 International Conference on Financial Cryptography and Data Security. Springer, 507–527.
[47] Shravan Srinivasan, Alexander Chepurnoy, Charalampos Papamanthou, Alin Tomescu, and Yupeng Zhang. 2022.

Hyperproofs: Aggregating and maintaining proofs in vector commitments. In 31st USENIX Security Symposium (USENIX
Security 22). 3001–3018.

[48] Facebook Database Engineering Team. 2022. RocksDB: A Persistent Key-Value Store for Flash and RAM Storage.

https://rocksdb.org.

[49] Parity Technologies. 2019. OpenEthereum. https://www.parity.io/ethereum/.

[50] Alin Tomescu, Ittai Abraham, Vitalik Buterin, Justin Drake, Dankrad Feist, andDmitry Khovratovich. 2020. Aggregatable

subvector commitments for stateless cryptocurrencies. In Proceedings of the 2020 International Conference on Security
and Cryptography for Networks. Springer, 45–64.

[51] Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abraham, Benny Pinkas, Guy Golan Gueta, and Srinivas Devadas.

2020. Towards scalable threshold cryptosystems. In Proceedings of the 2020 IEEE Symposium on Security and Privacy.
IEEE, 877–893.

[52] Uniswap Labs. 2023. Peripheral smart contracts for interacting with Uniswap V2. https://github.com/Uniswap/v2-

periphery.

[53] Uniswap Labs. 2023. Uniswap Protocol. https://uniswap.org/.

[54] JiapingWang andHaoWang. 2019. Monoxide: Scale out blockchains with asynchronous consensus zones. In Proceedings
of the 16th USENIX Symposium on Networked Systems Design and Implementation. 95–112.

[55] Karl Wüst and Arthur Gervais. 2018. Do you need a blockchain?. In 2018 Crypto Valley Conference on Blockchain
Technology (CVCBT). IEEE, 45–54.

[56] Haifeng Yu, Ivica Nikolić, Ruomu Hou, and Prateek Saxena. 2020. OHIE: Blockchain scaling made simple. In Proceedings
of the 2020 IEEE Symposium on Security and Privacy. IEEE, 90–105.

[57] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018. Rapidchain: Scaling blockchain via full sharding. In

Proceedings of the 2018 ACM SIGSAC conference on computer and communications security. 931–948.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://github.com/RainBlock/rainblock-protocol
https://eips.ethereum.org/EIPS/eip-20
https://www.usenix.org/conference/hotstorage18/presentation/raju
https://rocksdb.org
https://www.parity.io/ethereum/
https://github.com/Uniswap/v2-periphery
https://github.com/Uniswap/v2-periphery
https://uniswap.org/

	Abstract
	1 Introduction
	2 Background
	2.1 Authenticated Storage in Blockchain
	2.2 Elliptic Curve Group
	2.3 KZG Commitment
	2.4 Authenticated Multipoint Evaluation Tree

	3 Overview
	3.1 Versioned Key-value Database
	3.2 Multi-level AMT
	3.3 Proof Sharding

	4 LVMT Design
	4.1 Interfaces to the Transaction Execution
	4.2 Proving Key-value Pairs
	4.3 State Rollback
	4.4 Garbage Collection for Append-only Merkle Trees

	5 Implementation
	6 Evaluation
	7 Discussions
	8 Related Works
	9 Conclusion
	References

