
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Automated Synthesis of Asynchronizations

SIDI MOHAMED BEILLAHI, Université de Paris, France
AHMED BOUAJJANI, Université de Paris, France
CONSTANTIN ENEA, Université de Paris, France
SHUVENDU LAHIRI,Microsoft Research Lab - Redmond, USA

Asynchronous programming is widely adopted for building responsive and efficient software. Modern lan-

guages such as C# provide async/await primitives to simplify the use of asynchrony. However, the use of these

primitives remains error-prone because of the non-determinism in their semantics. In this paper, we propose

an approach for refactoring a given sequential program into an asynchronous program that uses async/await,

called asynchronization. The refactoring process is parametrized by a set of methods to replace with given

asynchronous versions, and it is constrained to avoid introducing data races. Since the space of possible

solutions is exponential in general, we focus on characterizing the delay complexity that quantifies the delay

between two consecutive and distinct outputs. We show that this is polynomial time modulo an oracle for

solving reachability (assertion checking) in sequential programs. We also describe a pragmatic approach based

on an interprocedural data-flow analysis with polynomial-time delay complexity. The latter approach has been

implemented and evaluated on a number of non-trivial C# programs extracted from open-source repositories.

1 INTRODUCTION
Asynchronous programming is widely adopted for building responsive and efficient software.

Unlike synchronous procedure calls, asynchronous procedure calls may run only partially and

return the control to their caller. Later, when the callee finishes execution, a callback procedure

registered by the caller is invoked.

As an alternative to the tedious model of asynchronous programming that required explicitly reg-

istering callbacks with asynchronous calls, C# 5.0 [Bierman et al. 2012] introduced the async/await

primitives. These primitives allow the programmer to write code in a familiar sequential style

without explicit callbacks. An asynchronous procedure, marked by the keyword async, returns
a task object that the caller uses to “await” it. Awaiting may suspend the execution of the caller,

if the awaited task did not finish, but does not block the thread it is running on. The code after

the await is the continuation that is automatically called back when the callee result is ready.

For instance, on the right of Figure 1, the method ContentLength calls an asynchronous method

GetStringAsync that returns a task object t5 used to await it at line 24. Executing this await sus-

pends the execution of ContentLength and returns the control to its caller MainAsync, assuming

that GetStringAsync did not finish. Passing the control to the caller is a constraint of the await

semantics. When GetStringAsync finishes and the thread is idle, the continuation after line 24 is

scheduled. This paradigm has become popular across many languages, eg, C++, JavaScript, Python.

While simplifying the writing of asynchronous programs, the async/await primitives introduce

concurrency which is notoriously complex. Depending on the scheduler, the code in between a call

and a matching await (referring to the same task) may execute before some part of the awaited

task (if the latter passed the control to its caller before finishing), or after the awaited task finished.

For instance, on the right of Figure 1, the assignment x=0 in MainAsync between the call and

the await of ReadFile may execute before ReadFile finishes, if the await in ReadFile suspends

Authors’ addresses: Sidi Mohamed Beillahi, Université de Paris, France, beillahi@irif.fr; Ahmed Bouajjani, Université de

Paris, France, abou@irif.fr; Constantin Enea, Université de Paris, France, cenea@irif.fr; Shuvendu Lahiri, Microsoft Research

Lab - Redmond, USA, shuvendu@microsoft.com.

2018. 2475-1421/2018/1-ART1 $15.00

https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Sidi Mohamed Beillahi, Ahmed Bouajjani, Constantin Enea, and Shuvendu Lahiri

1 void Main(string url0) {

2 string url1 = ReadFile("url1.txt");

3 x = 0;

4 int val0 = ContentLength(url0);

7 int val1 = ContentLength(url1);

9 int r = x;

10 Debug.Assert(r == val0 + val1);

11 }

13 string ReadFile(string fn) {

14 StreamReader reader = new StreamReader(fn);

15 string content = reader.ReadToEnd();

17 return content;

18 }

20 int ContentLength(string url) {

21 HttpClient clt = new HttpClient()

22 string urlContents = clt.GetString(url);

23 int r1 = x;

25 x = r1 + urlContents.Length;

26 return urlContents.Length;

27 }

1 async Task MainAsync(string url0) {

2 Task<string> t1 = ReadFile("url1.txt");

3 x = 0;

4 Task<int> t2 = ContentLength(url0);

5 string url1 = await t1;

6 int val0 = await t2;

7 Task<int> t3 = ContentLength(url1);

8 int val1 = await t3;

9 int r = x;

10 Debug.Assert(r == val0 + val1);

11 }

13 async Task<string> ReadFile(string fn) {

14 StreamReader reader = new StreamReader(fn);

15 Task<string> t4 = reader.ReadToEndAsync();

16 string content = await t4;

17 return content;

18 }

20 async Task<int> ContentLength(string url) {

21 HttpClient clt = new HttpClient();

22 Task<string> t5 = clt.GetStringAsync(url);

23 int r1 = x;

24 urlContents = await t5;

25 x = r1 + urlContents.Length;

26 return urlContents.Length;

27 }

Fig. 1. A synchronous C# program and an asynchronous refactoring (x is a static variable).

its execution and passes the control to MainAsync (when reaching the await at line 16 because

ReadToEndAsync did not finish), or after ReadFile finishes, otherwise (the call to ReadToEndAsync
finishes before reaching its matching await at line 16). The resemblance with sequential code can

be especially deceitful since this non-determinism is opaque. It is common that await instructions

are placed immediately after the corresponding call which limits the benefits that one can obtain

from executing code in the caller concurrently with code in the callee [Okur et al. 2014].

In this paper, we address the problem of writing efficient asynchronous code that uses async/await

primitives. We propose a procedure for automated synthesis of asynchronous programs equivalent

to a given synchronous (sequential) program 𝑃 . This can be seen as a way of refactoring synchronous

code to asynchronous code. Since solving this problem in its full generality would require checking

equivalence between arbitrary programs, which is known to be hard, we consider a restricted space

of asynchronous program candidates that are defined by substituting synchronous methods in 𝑃

with asynchronous versions (assumed to be behaviorally equivalent). The substituted methods are

supposed to be leaves of the call-tree, i.e., they do not call any other method in 𝑃 . Such programs are

called asynchronizations of 𝑃 . A practical instantiation of this problem is replacing IO synchronous

calls for, e.g., reading/writing files, managing http connections, with asynchronous versions.

For instance, let us consider the sequential C# program on the left of Fig. 1. The Main invokes
ReadFile and ContentLength in a synchronous way (using the standard call stack semantics).

ReadFile reads and returns the content of a file while ContentLength returns the length of the

text in a webpage. The two URLs given as input to ContentLength are given as input to Main or
read from some file using ReadFile. The program uses a variable x to aggregate the lengths of all

pages accessed by ContentLength. Note that this program passes the assertion at line 10.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Automated Synthesis of Asynchronizations 1:3

The time-consuming primitives for reading files, StreamReader.ReadToEnd, or the content of a
webpage, HttpClient.GetString1, are an obvious choice for being replaced with equivalent asyn-

chronous counterparts, i.e., StreamReader.ReadToEndAsync and HttpClient.GetStringAsync,
respectively. Performing such tasks asynchronously can lead to significant boosts in performance.

The program on the right of Fig. 1 is an example of an asynchronization of the program on the

left where the calls to StreamReader.ReadToEnd and HttpClient.GetString are replaced with

asynchronous counterparts (assumed to have the same effect). The syntax of async/await imposes

that every method that transitively calls one of the substituted methods must also be declared to be

asynchronous, e.g., MainAsync and ContentLength. Then, an asynchronous call must be followed

by an await statement that specifies the control location where that task should have completed

(e.g., the return value should have been computed). For instance, the call to ReadToEndAsync at
line 15 is immediately followed by an await since the next instruction (at line 17) uses the value

computed by ReadToEndAsync. Therefore, synthesizing such refactoring boils down to finding a

correct placement of awaits for every method that transitively calls a substituted method (we do

not consider “deeper” refactoring like rewriting conditionals or loops).

We consider an equivalence relation between a synchronous program and an asynchronization

that corresponds to absence of data races in the asynchronization. Data race free asynchronizations

are called sound. Relying on absence of data races instead of a more precise equivalence relation like

equality of reachable sets of states could prevent enumerating some number of asynchronizations

that reach the same set of states as the original synchronous program. However, checking equality

of reachable sets of states is known to be hard in general, and relying on absence of data races is

a well established compromise. For instance, the asynchronization on the right of Fig. 1 is sound

(data-race free) since the two calls to ContentLength that access x do not “overlap” and both finish

before the read at line 9. The accesses to x in the asynchronization are performed in the same order

as in the original synchronous program.

The asynchronization on the right of Fig. 1 is not the only sound (data-race free) asynchronization

of the program on the left. For instance, the await at line 24 can be moved one statement up (before

the read of x) and the resulting program remains equivalent to the sequential one. Thus, we

consider the problem of enumerating all sound asynchronizations of a sequential program 𝑃 w.r.t.

substituting a set of methods with asynchronous versions. Enumerating all sound asynchronizations

makes it possible to deal separately with the problem of choosing the best asynchronization in

terms of performance based on some metric (e.g., performance tests). This problem reduces to

finding all possible placements of awaits that do not introduce data races.

In general, the number of (sound) asynchronizations is exponential in the number of method

calls in the program. Therefore, we focus on the delay complexity of this enumeration problem,

i.e., the complexity of the delay between outputting two consecutive (distinct) outputs. Note that a

trivial enumeration of all asynchronizations and checking equivalence to the original program for

each one of them has an exponential delay complexity. We also consider the problem of computing

optimal asynchronizations that maximize the distance between a call and a matching await. The

code in between these two statements can execute in parallel with the awaited task, and therefore,

optimal asynchronizations maximize the amount of parallelism. Note however that it is hard to

argue that such maximal parallelism translates always to maximal performance in practice.

We show that both the delay complexity of the enumeration problem, and the complexity

of computing an optimal asynchronization are polynomial time modulo an oracle for solving

reachability (assertion checking) in sequential programs (they both reduce to a quadratic number

1
Actually, the .Net platform does not contain such a method. We use it here to simplify the exposition. Reading the content

of a webpage should pass through WebRequest and HttpWebResponse objects. The explanations would remain valid.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Sidi Mohamed Beillahi, Ahmed Bouajjani, Constantin Enea, and Shuvendu Lahiri

of reachability queries). The former relies on the latter via a rather surprising result, which differs

from other concurrency synthesis problems (e.g., insertion of locks), which is that the optimal

asynchronization is unique. This holds even if the optimality is relative to a given asynchronization

𝑃𝑎 which intuitively, imposes an upper bound on the distance between awaits and matching calls.

In general, one could expect that avoiding data races could reduce to a choice between moving

one await or another closer to the matching call. We show that this is not necessary because

essentially, the optimal asynchronization is required to be equivalent to a sequential program,

which is deterministic and executes statements in a fixed order. To show the robustness of these

results, we also investigate the related problem of synthesizing sound multi-threaded refactorings,

where every method call is executed by a different thread. We show that the techniques used to

compute asynchronizations can be extended to this case as well.

As a more pragmatic approach, we define a procedure for computing sound asynchronizations

which relies on a bottom-up interprocedural data-flow analysis. Intuitively, the placement of awaits

is computed by traversing the call graph bottom up, from “base” methods that do not call any other

method in the program, to methods that call only base methods, and so on. Each method 𝑚 is

considered only once, and the placement of awaits in𝑚 is derived based on a data-flow analysis

that computes read or write accesses made in the callees. We show that this procedure computes

optimal asynchronizations of abstracted programs where every Boolean condition in if-then-else

constructs or while loops is replaced with non-deterministic choice. These asynchronizations are

sound for the concrete programs as well. This procedure enables a polynomial delay enumeration

of the sound asynchronizations of abstracted programs.

We implemented the asynchronization enumeration based on data-flow analysis in a prototype

tool for C# programs. We evaluated this implementation on a number of non-trivial programs

extracted from open source repositories. This evaluation shows that sound asynchronizations can

be enumerated efficiently and in some cases, we found asynchronizations that increase the amount

of parallelism (the distance between calls and awaits). This demonstrates that our techniques have

the potential to become the basis of refactoring tools that allow programmers to improve their

usage of async/await primitives.

In summary, this paper makes the following contributions:

• Wedefine the problem of data race-free asynchronization synthesis for refactoring sequential

code to equivalent asynchronous code.

• We show that the optimization problem of computing a data race-free asynchronization

that maximizes the distance between calls and awaits admits a unique solution.

• We investigate the delay complexity of data race-free asynchronization synthesis.

• A pragmatic algorithm based on data-flow analysis for computing asynchronizations.

• A prototype implementation of this algorithm and an evaluation of this prototype on a

benchmark of non-trivial C# programs extracted from open-source repositories.

2 OVERVIEW
We give an overview of our techniques for synthesizing sound asynchronizations using as example

the synchronous program on the left of Fig. 2. We discuss asynchronizations obtained by replacing

the calls to IO with equivalent asynchronous counterparts IOAsync. The program on the center of

Fig. 2 is the “weakest” asynchronization where the awaits cannot be moved further away from their

matching calls because of the use of the return values. The methods MainAsync, F1, and F2 are

declared to be asynchronous since they (in)directly call IOAsync. This program is not a solution to

our synthesis problem since it is not equivalent to the sequential program. It admits new behaviors,

an example being pictured in Fig. 3 (edges represent execution order): the accesses to x and y in
MainAsync occur before the write to x in F1 and the write to y in F2, respectively. These statements

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Automated Synthesis of Asynchronizations 1:5

1 void Main() {

2 F1();

3 F2();

5 int r1 = x;

7 int r2 = y;

8 x = r1 + r2;

11 }

12 void F1() {

13 int r3 = IO();

15 x = r3;

16 }

17 void F2() {

18 int r4 = IO();

20 y = r4;

21 }

1 async Task MainAsync() {

2 Task t1 = F1();

3 Task t2 = F2();

5 int r1 = x;

7 int r2 = y;

8 x = r1 + r2;

9 await t1;

10 await t2;

11 }

12 async Task F1() {

13 Task<int> t3 = IOAsync();

14 int r3 = await t3;

15 x = r3;

16 }

17 async Task F2() {

18 Task<int> t4 = IOAsync();

19 int r4 = await t4;

20 y = r4;

21 }

1 async Task MainAsync() {

2 Task t1 = F1();

3 Task t2 = F2();

4 await t1;

5 int r1 = x;

6 await t2;

7 int r2 = y;

8 x = r1 + r2;

11 }

12 async Task F1() {

13 Task<int> t3 = IOAsync();

14 int r3 = await t3;

15 x = r3;

16 }

17 async Task F2() {

18 Task<int> t4 = IOAsync();

19 int r4 = await t4;

20 y = r4;

21 }

Fig. 2. A synchronous C# program and two asynchronizations (x and y are static variables).

were executed in the opposite order in the sequential program. They form three data races because

they are not ordered by the control-flow of the asynchronization. There is another execution where

they execute as in the original program: if tasks t3 and t4 finish immediately, then the await has

no effect, and F1 and F2 finish before returning control to their caller MainAsync.

async Task F1() {

 Task<int> t3 = IOAsync();
 int r3 = await t3;

 x = r3
}

async Task MainAsync() {

 Task t1 = F1();

 Task t2 = F2();

 int r1 = x;
 int r2 = y;
 x = r1 + r2;

 await t1;

 await t2;

}

async Task F2() {

 Task<int> t4 = IOAsync();
 int r4 = await t4;

 y = r4
}

Fig. 3. An execution with three data races on x
and y. The blocks of instructions executed in F1
and F2 are marked with red and blue outlines,
respectively. Each call is decomposed into two
blocks representing what is executed before they
are suspended (due to an await of IOAsync) and
when the continuation is scheduled.

We define a procedure for computing a data race-

free asynchronization, which is optimal in the sense

that it maximizes the distance between calls and

matching awaits. This is an iterative process that

repairs data races starting from the “weakest” asyn-

chronization on the center of Fig. 2. For instance,

the data race between the write to x in MainAsync
and the write to x in F1 in Fig. 3 can be repaired by

moving the await t1 one position up, before the the

write to x in MainAsync. This way, the write to x
in F1 will always execute first. The call to F1 that

matches this await and the write to x in MainAsync
are regarded as the root cause of this data race.

For efficiency, the data races are enumerated and

repaired in a certain order, that avoids superfluous

repair steps. This order prioritizes data races involv-

ing statements that would execute first in the orig-

inal sequential program. For instance, in Fig. 3, the

first data race to repair involves the read of x from
MainAsync and the write to x in F1, because these
statements are the first to execute in the original

sequential program among the other statements in-

volved in data races. Repairing this data race consists

in moving await t1 before the read of x from MainAsync, which implies that F1 completes before

the read of x. This repair is defined from a notion of root cause of a data race, that in this case,

contains the call to F1 and the read of x from MainAsync. Interestingly, this repair step removes

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Sidi Mohamed Beillahi, Ahmed Bouajjani, Constantin Enea, and Shuvendu Lahiri

the write-write data race between the write to x in MainAsync and the write to x in F1 as well. If
we would have repaired these data races in the opposite order, we would have moved await t1
first before the write to x, and then, before the read of x. Similarly, the data race between the read

of y from MainAsync and the write to y in F2 is repaired by moving the await t2 before the the
read from y in MainAsync (the call to F2 and the read from y in MainAsync are the root cause of this
data race). The resulting program is shown on the right of Fig. 2 and it is equivalent to the original

sequential program. We show that the problem of computing root-causes of data races which are

minimal in this order can be reduced in polynomial time to reachability (assertion checking) in

sequential programs.

Asynchronizations can be partially ordered depending on the distance, i.e., the number of

statements from the original program, between a call and a matching await. The left of Fig. 4

pictures an excerpt of this partial order where an asynchronization is represented as a vector of

distances, the first element is the number of statements between the call and the await on t1 (we
count only statements that appear in the sequential program as well and exclude awaits), and so

on. The asynchronization on the right of Fig. 1 corresponds to (1, 1, 0, 0). The bottom of this order

represents an asynchronization where every call is immediately followed by await, and it has the

same semantics as the original program. The top element is the “weakest” asynchronization, which

was given in the middle of Fig. 1. The right of Fig. 4 gives the set of all sound asynchronizations.

The program on the right of Fig. 1 is the biggest element, i.e., moving any await further away from

the matching call introduces a data race.

(4, 3, 0, 0)
...
(1, 2, 0, 0)(2, 1, 0, 0)

(1, 1, 0, 0)

(1, 0, 0, 0)(0, 1, 0, 0)

(0, 0, 0, 0)

(1, 1, 0, 0)

(1, 0, 0, 0)(0, 1, 0, 0)

(0, 0, 0, 0)

Fig. 4. Partially-ordered sets of asynchroniza-
tions of the program on the left of Fig. 2. The
edges connect comparable elements, smaller ele-
ments being below bigger elements.

To enumerate all sound asynchronizations, we

perform a top-down traversal of the partial order on

the left of Fig. 4. We first compute the biggest ele-

ment that is data race free. Although this is a partial

order, we show that this element is actually unique.

Intuitively, uniqueness is proved by contradiction,

showing that the least upper bound of two maxi-

mal incomparable sound asynchronizations is also a

sound asynchronization. For instance, the least com-

mon ancestor of the two sound asynchronizations

with vectors of distances (1, 0, 0, 0) and (0, 1, 0, 0) is
the sound asynchronization (1, 1, 0, 0).

Then, for each immediate predecessor 𝑃𝑎 of the biggest sound asynchronization, we compute the

biggest sound asynchronization which is smaller than 𝑃𝑎 (the first step is a particular case where 𝑃𝑎
is the top element). As an extension of the previous case, this is also unique, and called an optimal

asynchronization relative to 𝑃𝑎 . Ensuring that traversals starting in different immediate predecessors

explore disjoint parts of the asynchonization space requires some additional constraints on the

exploration, which are explained in Section 5. The enumeration finishes when reaching the bottom,

which is data race free by definition, on all branches of the recursion.

As a pragmatic alternative, we propose a procedure based on static analysis for enumerating

sound asynchronizations, which follows essentially the same schema, except that the problem of

data race detection is delegated to a static analysis.

3 ASYNCHRONOUS PROGRAMS
Fig. 5 lists the syntax of a simple programming language used to formalize our approach. A program

is defined by set of methods, including a distinguished main, which are classified as synchronous or

asynchronous. Synchronous methods execute immediately as they are invoked and run continuously

until completion. Asynchronous methods, marked using the keyword async, can run only partially

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Automated Synthesis of Asynchronizations 1:7

⟨prog⟩ ::= program ⟨md ⟩

⟨md ⟩ ::= method ⟨m⟩ ⟨inst ⟩ | async method ⟨m⟩ ⟨inst ⟩ | ⟨md ⟩ ; ⟨md ⟩

⟨inst ⟩ ::= ⟨x ⟩ := ⟨le⟩ | ⟨r ⟩ := ⟨x ⟩ | ⟨r ⟩ := call ⟨m⟩ | return | await ⟨r ⟩ | await ∗ | if ⟨le⟩ {⟨inst ⟩} else {⟨inst ⟩}
| while ⟨le⟩ {⟨inst ⟩} | ⟨inst ⟩ ; ⟨inst ⟩

Fig. 5. Syntax. ⟨𝑚⟩, ⟨𝑥⟩, and ⟨𝑟 ⟩ represent method names, program and local variables, resp. ⟨𝑙𝑒⟩ is an
expression over local variables, or ∗ which is non-deterministic choice.

and be interrupted when executing an await. Only asynchronous methods are allowed to use

await, and all methods using await must be defined as asynchronous. We assume that methods

are not (mutually) recursive. A program is called synchronous if it is a set of synchronous methods.

A method consists of a method name from a setM and a method body, i.e., a list of statements.

These statements use a set PV of program variables, which can be accessed from different methods

(ranged over using 𝑥 , 𝑦, 𝑧,. . .), and a set LV of method local variables (ranged over using 𝑟 , 𝑟1,

𝑟2,. . .). We assume that input/return parameters are modeled using dedicated program variables.

We assume that each method call returns a unique task identifier from a set T, which is used to

record control dependencies imposed by awaits (for uniformity, synchronous methods return a

task identifier as well). Our language includes assignments to local/program variables, awaits,
return statements, while loops, and conditionals. We assume that variables take values from a

data domainD, which includes T to account for variables storing task identifiers. The assignment to

a local variable ⟨𝑟 ⟩ := ⟨𝑥⟩, where 𝑥 is a program variable, is called a read of ⟨𝑥⟩ and an assignment

to a program variable ⟨𝑥⟩ := ⟨𝑙𝑒⟩ is called a write to ⟨𝑥⟩. A base method is a method whose body

does not contain method calls.

Asynchronous methods. Asynchronous methods can use awaits to wait for the completion of a

task (invocation) while the control is passed to their caller. The parameter 𝑟 of the await specifies
the id of the awaited task. As a sound abstraction of awaiting the completion of an IO operation

(reading or writing a file, an http request, etc.), which we do not model explicitly, we use a variation

await ∗. This has a non-deterministic effect of either continuing to the next statement in the same

method (as if the IO operation already completed), or passing the control to the caller (as if the IO

operation is still pending).

async method GetStringAsync() {

await ∗;
retVal = WWW[url_Input];

return

}

async method ReadToEndAsync() {

await ∗;
ind = Stream.index;

len = Stream.content.Length;

if (ind >= len)

retVal = ""; return

Stream.index = len;

retVal = Stream.content(ind,len);

return }

Fig. 6. Modeling IO operations.

For example, Fig. 6 lists the modeling in our language of IO

methods ReadToEndAsync and GetStringAsync used in Fig. 1.

We use program variables to represent system resources such as

the network or the file system. The await for the completion of

accesses to such resources is modeled by await ∗. This enables
capturing racing accesses to system resources in asynchronous

executions. GetStringAsync contains a read of the resource WWW
(for world wide web) at some input url. Parameters or return

values are modeled using program variables. ReadToEndAsync
is modeled using reads/writes of the index/content of the input

stream, and await ∗ models the await for their completion.

We assume that the body of every asynchronous method𝑚

satisfies several well-formedness syntactic constraints, defined on its control-flow graph (CFG). We

recall that each node of the CFG represents a basic block of code (a maximal-length sequence of

branch-free code), and nodes are connected by directed edges which represent a possible transfer

of control between blocks. Thus,

(1) every call 𝑟 := call𝑚′ uses a distinct variable 𝑟 (to store task identifiers),

(2) every CFG block containing an await 𝑟 is dominated by the CFG block containing the call

𝑟 := call . . . (i.e., every CFG path from the entry to the await has to pass through the call),

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Sidi Mohamed Beillahi, Ahmed Bouajjani, Constantin Enea, and Shuvendu Lahiri

(3) every CFG path starting from a block containing a call 𝑟 := call . . . to the exit has to pass

through an await 𝑟 statement.

The first condition simplifies the technical exposition, while the last two ensure that 𝑟 stores a

valid task identifier when executing an await 𝑟 , and that every asynchronous invocation is awaited

before the caller finishes. Languages like C# or Javascript do not enforce the latter constraint, but it

is considered bad practice due to possible exceptions that may arise in the invoked task and which

are not caught. In this work, we forbid passing task identifiers as method parameters or return

values (which is possible in C#). An await 𝑟 statement is said to match an 𝑟 := call𝑚′ statement.

async method Main {

while ∗
r = call m;

await r;

}

async method Main {

r = call m;

if ∗
await r;

}

async method Main {

r = call m;

while ∗
r' = call m;

await r';

await r;

}

Fig. 7. Examples of programs

For example, the program on the left of

Fig. 7 does not satisfy the second condition

above since await r can be reached with-

out entering the loop. The program in the

center of Fig. 7 does not satisfy the third

condition since we can reach the end of the

method without entering the if branch and

thus, without executing await r. The program on the right of Fig. 7 satisfies both conditions.

Semantics. A program configuration is a tuple (g, stack, pending, completed, c-by,w-for) where
g is composed of the valuation of the program variables, stack is the call stack, pending is the

set of asynchronous tasks, e.g., continuations predicated on the completion of some method call,

completed is the set of completed tasks, c-by represents the relation between a method call and its

caller, and w-for represents the control dependencies imposed by await statements. The activation

frames in the call stack and the asynchronous tasks are represented using triples (𝑖,𝑚, ℓ) where
𝑖 ∈ T is a task identifier,𝑚 ∈ M is a method name, and ℓ is a valuation of local variables, including

as usual a dedicated program counter. The set of completed tasks is represented as a function

completed : T→ {⊤,⊥} such that completed(𝑖) = ⊤ when 𝑖 is completed and completed(𝑖) =⊥,
otherwise. We define c-by and w-for as partial functions T⇀ T with the meaning that c-by(𝑖) = 𝑗 ,

resp., w-for(𝑖) = 𝑗 , iff 𝑖 is called by 𝑗 , resp., 𝑖 is waiting for 𝑗 . We set w-for(𝑖) = ∗ if the task 𝑖 was
interrupted because of an await ∗ statement.

The semantics of a program 𝑃 is defined as a labeled transition system (LTS) [𝑃] = (C,Act, ps
0
,→

) where C is the set of program configurations, Act is a set of transition labels called actions, ps
0
is

the initial configuration, and→⊆ C ×Act ×C is the transition relation. Each program statement is

interpreted as a transition in [𝑃]. The set of actions is defined by:

Act ={(𝑖, ev) : 𝑖 ∈ T, ev ∈ {rd(𝑥),wr(𝑥), call(𝑗), await(𝑘), return, cont : 𝑗 ∈ T, 𝑘 ∈ T ∪ {∗}, 𝑥 ∈ PV}}

The transition relation→ is defined in Fig. 8. Transition labels are written on top of→.

Transitions labeled by (𝑖, rd(𝑥)) and (𝑖,wr(𝑥)) represent a read and a write accesses to the

program variable 𝑥 , respectively, executed by the task (method call) with identifier 𝑖 . A transition

labeled by (𝑖, call(𝑗)) corresponds to the fact that task 𝑖 executes a method call that results in

creating a task 𝑗 . Task 𝑗 is added on the top of the stack of currently executing tasks, declared

pending (setting completed(𝑗) to⊥), and c-by is updated to track its caller (c-by(𝑗) = 𝑖). A transition

(𝑖, return) represents the return from task 𝑖 . Task 𝑖 is removed from the stack of currently executing

tasks, and completed(𝑖) is set to ⊤ to record the fact that task 𝑖 is finished.

A transition (𝑖, await(𝑗)) corresponds to task 𝑖 waiting asynchronously for task 𝑗 . Its effect

depends on whether task 𝑗 is already completed. If this is the case (i.e., completed[𝑗] = ⊤), task
𝑖 continues and executes the next statement. Otherwise, task 𝑖 executing the await is removed

from the stack and added to the set of pending tasks, and w-for is updated to track the waiting-

for relationship (w-for(𝑖) = 𝑗). Similarly, a transition (𝑖, await(∗)) corresponds to task 𝑖 waiting

asynchronously for the completion of an unspecified task. Non-deterministically, task 𝑖 continues

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Automated Synthesis of Asynchronizations 1:9

𝑚 ∈ M r := x ∈ inst(ℓ (pc)) ℓ′ = ℓ [𝑟 ↦→ g(𝑥), pc ↦→ next(ℓ (pc))]

(g, (𝑖,𝑚, ℓ) ◦ stack, ∗, ∗, ∗, ∗)
(𝑖, rd(𝑥))
−−−−−−−−→ (g, (𝑖,𝑚, ℓ′) ◦ stack, ∗, ∗, ∗, ∗)

𝑚 ∈ M x := le ∈ inst(ℓ (pc)) ℓ′ = ℓ [pc ↦→ next(ℓ (pc))] g′ = g[𝑥 ↦→ ℓ (le)]

(g, (𝑖,𝑚, ℓ) ◦ stack, ∗, ∗, ∗, ∗)
(𝑖,wr(𝑥))
−−−−−−−−→ (g′, (𝑖,𝑚, ℓ′) ◦ stack, ∗, ∗, ∗, ∗)

𝑟 := call𝑚 ∈ inst(ℓ (pc)) ℓ0 = init(g,𝑚) 𝑗 ∈ T fresh ℓ′ = ℓ [𝑟 ↦→ 𝑗, pc ↦→ next(ℓ (pc))]
completed′ = completed[𝑗 ↦→⊥] c-by′ = c-by[𝑗 ↦→ 𝑖]

(g, (𝑗,𝑚′, ℓ) ◦ stack, ∗, completed, c-by, ∗)
(𝑖, call(𝑗))
−−−−−−−−−→ (g, (𝑖,𝑚, ℓ0) ◦ (𝑗,𝑚′, ℓ′) ◦ stack, ∗, completed′, c-by′, ∗)

𝑚 ∈ M ∧ return ∈ inst(ℓ (pc)) completed′ = completed[𝑖 ↦→ ⊤]

(g, (𝑖,𝑚, ℓ) ◦ stack, ∗, completed, ∗, ∗)
(𝑖, return)
−−−−−−−−→ (g, stack, ∗, completed′, ∗, ∗)

𝑚 ∈ M await r ∈ inst(ℓ (pc)) completed(ℓ (𝑟)) = ⊤ ℓ′ = ℓ [pc ↦→ next(ℓ (pc))]

(g, (𝑖,𝑚, ℓ) ◦ stack, ∗, completed, ∗, ∗)
(𝑖, await(ℓ (𝑟)))
−−−−−−−−−−−−−→ (g, (𝑖,𝑚, ℓ′) ◦ stack, ∗, completed, ∗, ∗)

𝑚 ∈ M await r ∈ inst(ℓ (pc)) completed(ℓ (𝑟)) =⊥ w-for′ = w-for[𝑖 ↦→ ℓ (𝑟)] ℓ′ = ℓ [pc ↦→ next(ℓ (pc))]

(g, (𝑖,𝑚, ℓ) ◦ stack, pending, completed, ∗,w-for)
(𝑖, await(ℓ (𝑟)))
−−−−−−−−−−−−−→ (g, stack, {(𝑖,𝑚, ℓ′) } ⊎ pending, completed, ∗,w-for′)

𝑚 ∈ M await ∗ ∈ inst(ℓ (pc)) ℓ′ = ℓ [pc ↦→ next(ℓ (pc))]

(g, (𝑖,𝑚, ℓ) ◦ stack, ∗, ∗, ∗, ∗)
(𝑖, await(∗))
−−−−−−−−−−−→ (g, (𝑖,𝑚, ℓ′) ◦ stack, ∗, ∗, ∗, ∗)

𝑚 ∈ M await ∗ ∈ inst(ℓ (pc)) w-for′ = w-for[𝑖 ↦→ ∗] ℓ′ = ℓ [pc ↦→ next(ℓ (pc))]

(g, (𝑖,𝑚, ℓ) ◦ stack, pending, ∗, ∗,w-for)
(𝑖, await(∗))
−−−−−−−−−−−→ (g, stack, {(𝑖,𝑚, ℓ′) } ⊎ pending, ∗, ∗,w-for′)

𝑚 ∈ M w-for(𝑖) = 𝑗 completed(𝑗) = ⊤

(g, 𝜖, {(𝑖,𝑚, ℓ) } ⊎ pending, completed, ∗,w-for)
(𝑖, cont)
−−−−−−−→ (g, (𝑖,𝑚, ℓ), pending, completed, ∗,w-for)

𝑚 ∈ M w-for(𝑖) = ∗

(g, stack, {(𝑖,𝑚, ℓ) } ⊎ pending, ∗, ∗,w-for)
(𝑖, cont)
−−−−−−−→ (g, (𝑖,𝑚, ℓ) ◦ stack, pending, ∗, ∗,w-for)

Fig. 8. Program semantics. For a function 𝑓 , we use 𝑓 [𝑎 ↦→ 𝑏] to denote a function 𝑔 such that 𝑔(𝑐) = 𝑓 (𝑐)
for all 𝑐 ≠ 𝑎 and 𝑔(𝑎) = 𝑏. The function inst returns the instruction at some given control location while next
gives the next instruction to execute. We use ◦ to denote sequence concatenation. We use init to represent
the initial state of a method call.

to the next statement, or task 𝑖 is interrupted and transferred to the set of pending tasks (w-for(𝑖)
is set to ∗).
A transition (𝑖, cont) represents the scheduling of the continuation of task 𝑖 . There are two

cases depending on whether 𝑖 waited for the completion of another task 𝑗 modeled explicitly in

the language (i.e., w-for(𝑖) = 𝑗), or an unspecified task (i.e., w-for(𝑖) = ∗). In the first case, the

transition is enabled only when the call stack is empty and the task 𝑗 is completed. In the second

case, the transition is enabled without any additional requirements. The latter models the fact that

methods implementing IO operations (waiting for unspecified tasks in our language) are executed

in background threads and can interleave with the main thread (that executes the Main method).

Although this may seem restricted because we do not allow arbitrary interleavings between such

methods, it is however complete when focusing on the existence of data races as in our approach.

An execution of 𝑃 is a sequence 𝜌 = ps
0

a1−→ ps
1

a2−→ . . . of transitions starting in the initial

configuration ps
0
and leading to a configuration ps where the call stack and the set of pending

tasks are empty. C[𝑃] denotes the set of all program variable valuations included in configurations

that are reached in executions of 𝑃 . Since we are only interested in reasoning about the sequence

of actions a1 · a2 · . . . labeling the transitions of an execution, we will call the latter an execution as

well. The set of executions of a program 𝑃 is denoted by Ex(𝑃).

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Sidi Mohamed Beillahi, Ahmed Bouajjani, Constantin Enea, and Shuvendu Lahiri

Table 1. Strict partial orders included in a trace.

a1 ≤𝜌 a2 a1 occurs before a2 in 𝜌

a1 ∼ a2 a1 = (𝑖, ev) and a2 = (𝑖, ev′)

(a1, a2) ∈ MO a1 ∼ a2 ∧ a1 ≤𝜌 a2

(a1, a2) ∈ CO (a1, a2) ∈ MO ∨ (a1 = (𝑖, call(𝑗)) ∧ a2 = (𝑗, _)) ∨ (∃ a3 . (a1, a3) ∈ CO ∧ (a3, a2) ∈ CO)
(a1, a2) ∈ SO (a1, a2) ∈ CO ∨ (∃ a3 . (a1, a3) ∈ SO ∧ (a3, a2) ∈ SO)

∨ (a1 = (𝑗, _) ∧ a2 = (𝑖, _) ∧ ∃ a3 = (𝑖, call(𝑗)) . a3 ≤𝜌 a2)
(a1, a2) ∈ HB (a1, a2) ∈ CO ∨ (∃ a3 . (a1, a3) ∈ HB ∧ (a3, a2) ∈ HB)

∨ (a1 = (𝑗, _) ∧ a2 = (𝑖, _) ∧ ∃ a3 = (𝑖, await(𝑗)) . a3 ≠ a2 ∧ a3 ≤𝜌 a2)
∨ (a1 = (𝑗, await(𝑖′)) is the first await in 𝑗 ∧ a2 = (𝑖, _) ∧ ∃ a3 = (𝑖, call(𝑗)) . a3 ≤𝜌 a2)

Traces. The trace of an execution 𝜌 ∈ Ex(𝑃) is a tuple tr(𝜌) = (𝜌,MO,CO, SO,HB) of strict partial
orders between the actions in 𝜌 defined in Table 1. The method invocation order MO records the

order between actions in the same invocation, and the call order CO is an extension ofMO that

additionally orders actions before an invocation with respect to those inside that invocation. The

synchronous happens-before order SO orders the actions in an execution as if all the invocations

were synchronous (even if the execution may contain asynchronous ones). It is an extension of CO
where additionally, every action inside a callee is ordered before the actions following its invocation

in the caller. The (asynchronous) happens-before order HB contains typical control-flow constraints:

it is an extension of CO where every action 𝑎 inside an asynchronous invocation is ordered before

the corresponding await in the caller, and before the actions following its invocation in the caller

if 𝑎 precedes an await inMO (an invocation can be interrupted only when executing an await).
Tr(𝑃) is the set of traces of a program 𝑃 .

 async method Main {
 r1 = call m;

 await r1;

 r2 = x;

 x = 2 * r2;
 }

async method m {
 await *;

 retVal = x;

 x = input;
}

Fig. 9. A trace of an asynchronous pro-
gram. Arrows between statements denote
relations between the corresponding ac-
tions in the trace.

Fig. 9 shows a trace where two statements are linked

by a dotted arrow if the corresponding actions are related

by MO, a dashed arrow if the corresponding actions are

related by the CO but not byMO, and a solid arrow if the

corresponding actions are related by the HB but not by CO.

4 SYNTHESIZING ASYNCHRONOUS PROGRAMS
We define the synthesis problem we investigate in this

work. Given a synchronous program 𝑃 and a subset of base

methods 𝐿 ⊆ 𝑃 , the goal is to synthesize all asynchronous

programs 𝑃𝑎 that are equivalent to 𝑃 and that are obtained

by substituting every method in 𝐿 with an equivalent asynchronous version. The base methods

are intended to be models of standard library calls (e.g., IO operations) in a practical context, and

asynchronous versions are defined by inserting await ∗ statements (in the original synchronous

code). We use 𝑃 [𝐿] to emphasize a subset of base methods 𝐿 of a program 𝑃 . Also, we will call 𝐿 a

library. A library is called (a)synchronous when all methods are (a)synchronous.

4.1 Asynchronizations of a Synchronous Program

method Main {

r1 = call m;

r2 = x;

}

method m() {

retVal = x;

x = input;

return;

}

async method Main {

r1 = call m;

await r1;

r2 = x;

}

async method m {

await ∗
retVal = x;

x = input;

return;

}

async method Main {

r1 = call m;

r2 = x;

await r1;

}

async method m {

await ∗
retVal = x;

x = input;

return;

}

Fig. 10. A program and its asynchronizations.

Let 𝑃 [𝐿] be a synchronous program, and

𝐿𝑎 a set of asynchronous methods obtained

from those in 𝐿 by inserting at least one

await ∗ statement in their body (and adding

the keyword async). We assume that each

method in 𝐿𝑎 corresponds to a method in 𝐿

with the same name, and vice-versa. A pro-

gram 𝑃𝑎 [𝐿𝑎] is called an asynchronization of

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Automated Synthesis of Asynchronizations 1:11

𝑃 [𝐿] with respect to 𝐿𝑎 if it is a syntactically

correct program obtained by replacing the

methods in 𝐿 with those in 𝐿𝑎 and adding

await statements as necessary. More precisely, let 𝐿∗ ⊆ 𝑃 be the set of all methods of 𝑃 that

transitively call methods of 𝐿. Formally, 𝐿∗ is the smallest set of methods that includes 𝐿 and that

satisfies the following: if a method 𝑚 calls a method 𝑚 ∈ 𝐿∗, then 𝑚 ∈ 𝐿∗. Then, 𝑃𝑎 [𝐿𝑎] is an
asynchronization of 𝑃 [𝐿] with respect to 𝐿𝑎 if it is obtained from 𝑃 as follows:

• All methods in 𝐿∗ \ 𝐿 are declared as asynchronous (we assume that every call to an

asynchronous method is followed by an await statement, and any method that uses await
must be declared as asynchronous).

• For each invocation 𝑟 := call𝑚 of a method𝑚 ∈ 𝐿∗, add await statements await 𝑟 satisfying
the well-formedness syntactic constraints described in Section 3.

For instance, Fig. 10 lists a synchronous program and its two asynchronizations, where 𝐿 = 𝐿∗ = {𝑚}.
Asynchronizations differ only in the await placement.

Async[𝑃, 𝐿, 𝐿𝑎] is the set of all asynchronizations of 𝑃 [𝐿] w.r.t. 𝐿𝑎 . The strong asynchronization,

denoted by strongAsync[𝑃, 𝐿, 𝐿𝑎], is an asynchronization where every added await immediately

follows the matching method call. The strong asynchronization reaches exactly the same set of

program variable valuations as the original program.

4.2 Problem Definition
We investigate the problem of enumerating all asynchronizations of a given program w.r.t. a given

asynchronous library, which are sound, in the sense that they do not admit data races. Two actions

a1 and a2 in a trace 𝜏 = (𝜌,MO,CO, SO,HB) are concurrent if (a1, a2) ∉ HB and (a2, a1) ∉ HB.

Definition 4.1 (Data Race). An ansynchronous program 𝑃𝑎 admits a data race (a1, a2), where
(a1, a2) ∈ SO, if a1 and a2 are two concurrent actions of a trace 𝜏 ∈ Tr(𝑃𝑎), and a1 and a2 are read

or write accesses to the same program variable 𝑥 , and at least one of them is a write.

For example, the program on the right of Fig. 10 admits a data race between the actions that

correspond to x = input and r2 = x, respectively, in a trace where the call to𝑚 is suspended

when it reaches await ∗ and the control is transferred to Main which executes r2 = x. Traces of
synchronous programs can not contain concurrent actions, and therefore they do not admit data

races. Note that also strongAsync[𝑃, 𝐿, 𝐿𝑎] does not admit data races.

An asynchronization 𝑃𝑎 [𝐿𝑎] is called sound when 𝑃𝑎 [𝐿𝑎] does not admit data races. Absence of

data races implies equivalence to the original program, in the sense of reaching the same set of

configurations (program variable valuations).

Lemma 4.2. 𝑃 [𝐿] ≡ 𝑃𝑎 [𝐿𝑎] implies C[𝑃 [𝐿]] = C[𝑃𝑎 [𝐿𝑎]], for every 𝑃𝑎 [𝐿𝑎] ∈ Async[𝑃, 𝐿, 𝐿𝑎]
Proof. We have to show that for any asynchronization 𝑃𝑎 of a program 𝑃 , if 𝑃𝑎 does not admit

data races then C[𝑃𝑎] = C[𝑃]. Let 𝜌 be an execution of 𝑃𝑎 that reaches a configuration ps ∈ C[𝑃𝑎].
We show that actions in 𝜌 can be reordered such that any action that occurs in 𝜌 between (𝑖, call(𝑗))
and (𝑗, return) is not of the form (𝑖, _) (i.e., the task 𝑗 is executed synchronously). If an action (𝑖, _)
occurs in 𝜌 between (𝑖, call(𝑗)) and (𝑗, return), then it must be concurrent with (𝑗, return). Since
𝑃𝑎 does not admit data races, an execution 𝜌 ′ resulting from 𝜌 by reordering any two concurrent

actions reaches the same configuration ps as 𝜌 . Therefore, there exists an execution 𝜌 ′′ where the
actions that occur between any (𝑖, call(𝑗)) and (𝑗, return) are not of the form (𝑖, _). This is also an

execution of 𝑃 (modulo removing the awaits which have no effect), which implies ps ∈ C[𝑃]. □

Definition 4.3. Given a synchronous program 𝑃 [𝐿], and an asynchronous library 𝐿𝑎 , the asy-

chronization synthesis problem asks to enumerate all sound asynchronizations in Async[𝑃, 𝐿, 𝐿𝑎].

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Sidi Mohamed Beillahi, Ahmed Bouajjani, Constantin Enea, and Shuvendu Lahiri

There are other approaches for checking behavioral equivalence, e.g., reachable states equivalence,

and input-output equivalence, however, they are either undecidable or decidable but highly complex.

Our approach offers a stronger notion of equivalence that is simpler to check.

5 ENUMERATING SOUND ASYNCHRONIZATIONS
We describe an algorithm for solving the asynchronization synthesis problem. This algorithm relies

on a partial order between asynchronizations that guides the enumeration of possible solutions.

It computes optimal solutions (according to this order) repeatedly under different bounds, until

exploring the whole space.

5.1 Optimal Asynchronization
We define a partial order on the space of asynchronizations which takes into account the distance

between call statements and corresponding await statements.

An await statement s𝑤 in a method𝑚 of an asynchronization 𝑃𝑎 [𝐿𝑎] ∈ Async[𝑃, 𝐿, 𝐿𝑎] covers a
read/write statement s in 𝑃 if there exists a path in the CFG of𝑚 from the call statement matching

s𝑤 to s𝑤 that contains s. The set of statements covered by an await s𝑤 is denoted by Cover(s𝑤).
We compare asynchronizations in terms of sets of statements covered by awaits that match the

same call from the original synchronous program 𝑃 [𝐿]. Since asynchronizations are obtained by

adding awaits, every call statement in an asynchronization 𝑃𝑎 [𝐿𝑎] ∈ Async[𝑃, 𝐿, 𝐿𝑎] corresponds
to a fixed call in 𝑃 [𝐿].
Definition 5.1. For two asynchronizations 𝑃𝑎, 𝑃

′
𝑎 ∈ Async[𝑃, 𝐿, 𝐿𝑎], 𝑃𝑎 is less asynchronous than

𝑃 ′𝑎 , denoted by 𝑃𝑎 ≤ 𝑃 ′𝑎 , iff for every await statement s𝑤 in 𝑃𝑎 , there exists an await statement s𝑤

in 𝑃 ′𝑎 that matches the same call as s𝑤 , such that Cover(s𝑤) ⊆ Cover(s′𝑤).
For example, the two asynchronous programs in Fig. 10 are ordered by ≤ sinceCover(await 𝑟1) =
{} in the first and Cover(await 𝑟1) = {r2 = x} in the second.

Note that the strong asynchronization is less asynchronous than any other asynchronization.

Also, note that ≤ has a unique maximal element that is called the weakest asynchronization and

denoted by weakAsync[𝑃, 𝐿, 𝐿𝑎]. For instance, the program on the right of Fig. 10 is the weakest

asynchronization of the synchronous program on the left of the figure.

Relative Optimality. A crucial property of this partial order is that for every asynchronization 𝑃𝑎 ,

there exists a unique maximal asynchronization that is smaller than 𝑃𝑎 (w.r.t. ≤) and that is sound.

Formally, given 𝑃𝑎 ∈ Async[𝑃, 𝐿, 𝐿𝑎], an asynchronization 𝑃 ′𝑎 is called an optimal asynchronization of

𝑃 relative to 𝑃𝑎 if (1) 𝑃
′
𝑎 ≤ 𝑃𝑎 , 𝑃

′
𝑎 is sound, and (2) 𝑃

′
𝑎 is maximal among other sound asynchronizations

smaller than 𝑃𝑎 , i.e., ∀ 𝑃 ′′𝑎 ∈ Async[𝑃, 𝐿, 𝐿𝑎] . 𝑃 ′′𝑎 is sound and 𝑃 ′′𝑎 ≤ 𝑃1 ⇒ 𝑃 ′′𝑎 ≤ 𝑃 ′𝑎 .
The following lemma shows that for a given 𝑃𝑎 there exists a unique 𝑃 ′𝑎 that is an optimal

asynchronization of 𝑃 relative to 𝑃𝑎 . The existence is implied by the fact that strongAsync[𝑃, 𝐿, 𝐿𝑎]
is the bottom element of ≤. To prove uniqueness, we assume by contradiction that there exist

two incomparable optimal asynchronizations 𝑃1

𝑎 and 𝑃2

𝑎 and select the first await statement s
1

𝑤 ,

according to the control-flow of the sequential program, that is placed in different positions in the

two programs. Assume that s
1

𝑤 is closer to its matching call in 𝑃1

𝑎 . Then, we move s
1

𝑤 in 𝑃1

𝑎 further

away from its matching call to the same position as in 𝑃2

𝑎 . This modification does not introduce

data races since 𝑃2

𝑎 is data race free. Thus, the resulting program is data race free, bigger than 𝑃1

𝑎 ,

and smaller than 𝑃𝑎 w.r.t. ≤ contradicting the fact that 𝑃1

𝑎 is an optimal asynchronization.

Lemma 5.2. Given an asynchronization 𝑃𝑎 ∈ Async[𝑃, 𝐿, 𝐿𝑎], there exists a unique program 𝑃 ′𝑎 that
is an optimal asynchronization of 𝑃 relative to 𝑃𝑎 .

Proof. Since strongAsync[𝑃, 𝐿, 𝐿𝑎] is the bottom element of ≤, then there always exists a sound

asynchronization smaller than 𝑃𝑎 . Assume by contradiction that there exist two distinct programs

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Automated Synthesis of Asynchronizations 1:13

Algorithm 1 An algorithm for enumerating all sound asynchronizations (these asynchronizations

are obtained as a result of the output instruction). OptRelative returns the optimal asynchroniza-

tion of 𝑃 relative to 𝑃𝑎

1: procedure AsyncSynthesis(𝑃𝑎 , s𝑤)

2: 𝑃 ′𝑎 ← OptRelative(𝑃𝑎) ;
3: output 𝑃 ′𝑎 ;
4: P ← ImmPred(𝑃 ′𝑎, s𝑤) ;
5: for each (𝑃 ′′𝑎 , s′′𝑤) ∈ P
6: AsyncSynthesis(𝑃 ′′𝑎 , s′′𝑤) ;

𝑃1

𝑎 and 𝑃2

𝑎 that are both optimal asynchronizations of 𝑃 relative to 𝑃𝑎 . Let 𝜌
1
(resp., 𝜌2) be an

execution of 𝑃1

𝑎 (resp., 𝑃2

𝑎) where every await ∗ does not suspend the execution of the current task,

i.e., 𝜌1 and 𝜌2 simulate the synchronous execution of 𝑃 . Let s1𝑤 be the statement corresponding to

the first await action in 𝜌1 such that (1) there exists an await action in 𝜌2 with the corresponding

await statement s
2

𝑤 , such that s
1

𝑤 and s
2

𝑤 match the same call in 𝑃 , and Cover(s1𝑤) ⊂ Cover(s2𝑤)
(this holds because 𝑃1

𝑎 and 𝑃2

𝑎 are distinct asynchronizations of the same synchronous program,

thus Cover(s1𝑤) and Cover(s2𝑤) must be comparable), and (2) for every other await statement s
3

𝑤 in

𝑃1

𝑎 that generates an await action which occurs before the await action of s
1

𝑤 in 𝜌1, there exists an

await statement s
4

𝑤 in 𝑃2

𝑎 matching the same call in 𝑃 , such that Cover(s3𝑤) = Cover(s4𝑤).
Let 𝑃3

𝑎 be the program obtained from 𝑃1

𝑎 by moving the await s
1

𝑤 down (further away from the

matching call) such that Cover(s1𝑤) = Cover(s2𝑤). Moving an await down can only create data races

between actions that occur after the execution of the matching call. Then, 𝑃3

𝑎 contains a data race

iff there exists an execution 𝜌 of 𝑃3

𝑎 and two concurrent actions a1 and a2 that occur between the

action (𝑖, await(𝑗)) generated by s
1

𝑤 and the action (𝑖, call(𝑗)) of the call matching s
1

𝑤 , such that:

((𝑖, call(𝑗)), a1) ∈ CO, (a1, a𝑤) ∉ HB, ((𝑖, call(𝑗)), a2) ∈ CO and (a2, (𝑖, await(𝑗))) ∈ HB
where the action a𝑤 corresponds to the first await action in the task 𝑗 . Let s𝑤 be the statement

corresponding to the action a𝑤 . Since the only difference between 𝑃3

𝑎 and 𝑃2

𝑎 is the placement of

awaits then ((𝑖, call(𝑗)), a1) ∈ CO and ((𝑖, call(𝑗)), a2) ∈ CO hold in any execution 𝜌 ′ of 𝑃2

𝑎 that

contains the actions a1 and a2. Also, note that since a𝑤 occurs in the task 𝑗 that the action of s
1

𝑤 is

waiting for. This implies that in 𝜌1 the action of s𝑤 occurs before the action of s
1

𝑤 in 𝜌1. Therefore,

by the definition of s
1

𝑤 we have that s𝑤 in 𝑃1

𝑎 covers the same set of statements as the corresponding

s
′
𝑤 in 𝑃2

𝑎 that matches the same call as s𝑤 . Consequently, (a1, a′𝑤) ∉ HB and (a2, (𝑖, await(𝑗))) ∈ HB
hold in any execution 𝜌 ′ of 𝑃2

𝑎 that contains the actions a1 and a2 (a
′
𝑤 is the action of s

′
𝑤). Thus,

there exists an execution 𝜌 ′ of 𝑃2

𝑎 such that the actions a1 and a2 are concurrent. This implies that if

𝑃3

𝑎 admits a data race, then 𝑃2

𝑎 admits a data race between actions generated by the same statements.

As 𝑃2

𝑎 is data race free, we get that 𝑃3

𝑎 is data race free as well. Since 𝑃1

𝑎 < 𝑃3

𝑎 , we get that 𝑃
1

𝑎 is not

optimal, which contradicts the hypothesis. □

5.2 Enumeration Algorithm
Our algorithm for enumerating all sound asynchronizations is given in Algorithm 1 as a recursive

procedure AsyncSynthesis that we describe in two phases.

First, we ignore the second argument of AsyncSynthesis (written in blue), which represents an

await instruction. For an asynchronization 𝑃𝑎 , AsyncSynthesis outputs all sound asynchronizations
that are smaller than 𝑃𝑎 w.r.t. ≤. It uses OptRelative to compute the optimal asynchronization

𝑃 ′𝑎 of 𝑃 relative to 𝑃𝑎 , and then, calls itself recursively for all immediate predecessors of 𝑃 ′𝑎 w.r.t.
≤. AsyncSynthesis outputs all sound asynchronizations of 𝑃 when given as input the weakest

asynchronization of 𝑃 . The delay complexity of this algorithm remains exponential in general,

because it may output a sound asynchronization multiple times. Indeed, because asynchronizations

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Sidi Mohamed Beillahi, Ahmed Bouajjani, Constantin Enea, and Shuvendu Lahiri

are only partially ordered by ≤, different chains of recursive calls starting in different immediate

predecessors may end up outputting the same asynchronization. For instance, looking at the

asynchronizations of our motivating example on the right of Fig. 4, the asynchronization (0, 0, 0, 0)
will be outputted twice because it is an immediate predecessor of both (0, 1, 0, 0) and (1, 0, 0, 0).

To avoid outputting the same solution twice, we use a refinement of the above that restricts the

set of immediate predecessors available for a (recursive) call of AsyncSynthesis. This is based on

a strict total order ≺𝑤 between awaits in a program 𝑃𝑎 that follows a topological ordering of its

inter-procedural CFG, i.e., if s𝑤 occurs before s
′
𝑤 in the body of a method𝑚, then s𝑤 ≺𝑤 s

′
𝑤 , and if

s𝑤 occurs in a method𝑚 and s
′
𝑤 occurs in a method𝑚′ s.t.𝑚 (indirectly) calls𝑚′, then s𝑤 ≺𝑤 s

′
𝑤 .

Therefore, AsyncSynthesis takes an await statement s𝑤 as a second parameter, which is initially

the maximal element w.r.t. ≺𝑤 , and it calls itself only on immediate predecessors of an optimal

solution obtained by moving up an await s
′′
𝑤 smaller than or equal to s𝑤 w.r.t. ≺𝑤 . The recursive

call on that predecessor will receive as input s
′′
𝑤 . Formally, this relies on a function ImmPred that

returns pairs of immediate predecessors and await statements defined as follows:

ImmPred(𝑃 ′𝑎, s𝑤) = {(𝑃 ′′𝑎 , s′′𝑤) : 𝑃 ′′𝑎 < 𝑃 ′𝑎 and ∀ 𝑃 ′′′𝑎 ∈ Async[𝑃, 𝐿, 𝐿𝑎] . 𝑃 ′′′𝑎 < 𝑃 ′𝑎 =⇒ 𝑃 ′′′𝑎 ≤ 𝑃 ′′𝑎

and s
′′
𝑤 ⪯𝑤 s𝑤 and 𝑃 ′′𝑎 ∈ 𝑃 ′𝑎 ↑ s′′𝑤 }

(𝑃 ′𝑎 ↑ s′′𝑤 is the set of asynchronizations obtained from 𝑃 ′𝑎 by changing only the position of s
′′
𝑤 ,

moving it up w.r.t. the position in 𝑃 ′𝑎). For instance, looking at immediate predecessors of (1, 1, 0, 0)
on the right of Fig. 4, (0, 1, 0, 0) is obtained by moving the first await in ≺𝑤 and therefore, after

computing the optimal solution relative to it, which is itself, it will explore no more immediate

predecessors (ImmPred returns ∅ because the input s𝑤 is theminimal element of ≺𝑤 , and it is already
immediately after the matching call). Its immediate predecessor will be explored when recursing

on (1, 0, 0, 0). The complexity analysis also relies on a property of the optimal asynchronization

relative to an immediate predecessor: if the predecessor is defined by moving an await s
′′
𝑤 , then the

optimal asynchronization is obtained by moving only awaits smaller than s
′′
𝑤 w.r.t. ≺𝑤 .

Lemma 5.3. If 𝑃 ′′𝑎 is an immediate predecessor of a sound asynchronization 𝑃 ′𝑎 , which is defined by

moving an await s
′′
𝑤 in 𝑃 ′𝑎 up, then the optimal sound asynchronization relative to 𝑃 ′′𝑎 is obtained by

moving only awaits smaller than s
′′
𝑤 w.r.t. ≺𝑤 .

Proof. Moving an await up in 𝑃 ′𝑎 can only create data races between actions that occur after

the execution of this await (because the invocation is suspended earlier). The only possible repairs

of these data races consists in either moving s
′′
𝑤 down which results in 𝑃 ′𝑎 or moving up some other

awaits that occur in methods that (indirectly) call the method in which s
′′
𝑤 occurs. The first case is

not applicable because it gives a program that is not smaller than 𝑃 ′′𝑎 . In the second case, every

await s
′
𝑤 that is moved up occurs in a method that (indirectly) calls the method in which s

′′
𝑤 occurs,

and therefore, s
′
𝑤 is smaller than s

′′
𝑤 w.r.t. ≺𝑤 . □

We show that Algorithm 1 returns all sound asynchronizations when called with the weakest

asynchronization and the maximum await in ≺𝑤 . Lemma 5.3 shows that after having computed

an optimal sound asynchronization 𝑃 ′𝑎 in a recursive call with parameter s𝑤 any smaller sound

asynchronization is also smaller than some predecessor in ImmPred(𝑃 ′𝑎, s𝑤). Thus, the restriction
to a subset of predecessors is without loss of completeness (see also the supplementary material).

Theorem 5.4. AsyncSynthesis(weakAsync[𝑃, 𝐿, 𝐿𝑎], s𝑤), where s𝑤 is maximal inweakAsync[𝑃, 𝐿, 𝐿𝑎]
w.r.t. ≺𝑤 , outputs all sound asynchronizations of 𝑃 [𝐿] w.r.t. 𝐿𝑎 .

Viewing asychronization synthesis as an enumeration problem, the following theorem states its

delay complexity in terms of an oracle Oopt that returns an optimal asynchronization relative to a

given one. This follows from the fact that Algorithm 1 cannot return the same asynchonization

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Automated Synthesis of Asynchronizations 1:15

twice and computing immediate predecessors is polynomial time. The former is a consequence of

Lemma 5.3. Thus, let 𝑃1

𝑎 and 𝑃
2

𝑎 be two predecessors in ImmPred(𝑃 ′𝑎, s𝑤) obtained by moving up the

awaits s
1

𝑤 and s
2

𝑤 , respectively, and assume that s
1

𝑤≺𝑤s2𝑤 . By Lemma 5.3, all solutions computed in

the recursive call on 𝑃1

𝑎 will have s
2

𝑤 placed as in 𝑃 ′𝑎 while all the solutions computed in the recursive

call on 𝑃2

𝑎 will have s
2

𝑤 closer to the matching call. Therefore, the sets of solutions computed in

these two branches of the recursion are distinct and the same solution cannot be outputted twice.

Theorem 5.5. The delay complexity of the asychronization synthesis problem is polynomial time

modulo Oopt .

6 COMPUTING OPTIMAL ASYNCHRONIZATIONS
We describe an approach for computing the optimal asynchronization relative to a given synchro-

nization 𝑃𝑎 , which can be seen as a way of repairing 𝑃𝑎 so that it becomes data-race free. Intuitively,

we repeatedly eliminate data races in 𝑃𝑎 by moving certain await statements closer to the matching

calls. The data races in 𝑃𝑎 (if any) are enumerated in a certain order that prioritizes data races

between actions that occur first in executions of the original synchronous program.

6.1 Data Race Ordering
method Main {

while ∗
if ∗
r1 = x;

r2 = y; }

Fig. 11

We define an order between data races of asynchronizations based on the order

between actions in executions of the synchronous program 𝑃 . This order relates

data races in possibly different executions or asynchronizations (of the same

program), which is possible because each action in a data race corresponds to a

statement in 𝑃 (a read or a write to a program variable).

For two read/write statements s and s
′
, s ≺ s

′
denotes the fact that there is an

execution of 𝑃 in which the first time s is executed occurs before the first time s
′
is executed. For

two actions a and a
′
in an execution/trace of an asynchronization, generated

2
by two read/write

statements s and s
′
, resp., we use a ≺SO a

′
to denote the fact that s ≺ s

′
and either s

′ ⊀ s or s
′
is

reachable from s in the interprocedural
3
control-flow graph of 𝑃 without taking any back edge

4
.

async method Main {

r1 = call m;

if ∗
r2 = x;

x = r2 + 1;

else

r3 = x;

await r1;

}

async method m {

await ∗
retVal = x;

x = input;

return;

}

Fig. 12

For a deterministic synchronous program (admitting a single execution),

a ≺SO a
′
iff s ≺ s

′
. For non-deterministic programs, when s and s

′
are contained

in a loop body, it is possible that s ≺ s
′
and s

′ ≺ s. For instance, the statements

r1 = x and r2 = y of the program in Fig. 11 can be executed in different

orders depending on the number of loop iterations and whether the if branch

is entered during the first loop iteration. In this case, we use the control-flow

order to break the tie between a and a
′
.

The order between data races corresponds to the colexicographic order

induced by ≺SO. This is a partial order since actionsmay originate from different

control-flow paths and are incomparable w.r.t. ≺SO.
Definition 6.1 (Data Race Order). Given two races (a1, a2) and (a3, a4) admit-

ted by (possibly different) asynchronizations of a synchronous program 𝑃 , we

have that (a1, a2) ≺SO (a3, a4) iff a2 ≺SO a4, or a2 = a4 and a1 ≺SO a3.

Example 6.2. For the program in Fig. 12, we have the following order between data races:

(x = input, r2 = x) ≺SO (retVal = x, x = r2 + 1) because r2 = x is executed before the write

2
Each action labels a transition in the operational semantics (Section 3), and each transition corresponds to executing a

statement. This statement is said to generate the action.

3
The interprocedural graph is the union of the control-flow graphs of each method along with edges from call sites to entry

nodes, and from exit nodes to return sites.

4
A back edge points to a block that has already been met during a depth-first traversal of the control-flow graph, and

corresponds to loops.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Sidi Mohamed Beillahi, Ahmed Bouajjani, Constantin Enea, and Shuvendu Lahiri

x = r2 + 1 in the original synchronous program (for simplicity we use statements instead of

actions). However, the data races (x = input, r2 = x) and (x = input, r3 = x) are incomparable.

6.2 Repairing Data Races
Repairing a data race (a1, a2) reduces to modifying the position of a certain await. In general,

we can either move an await down (further away from the matching call), for instance in the

method executing a1, or move an await up (closer to the matching call), for instance in the method

executing a2. For example, the data race between x = input and r2 = x on the right of Fig. 10 can

be repaired by either moving await ∗ in𝑚 after the write x = input, so the call to𝑚 is suspended

later, or await r1 in Main before r2 = x, to restrict the set of statements that can execute before𝑚

finishes. In the following, we consider only repairs where awaits are moved up. The “completeness”

of this set of repairs follows from the particular order in which we enumerate data races. Intuitively,

moving the other await down would introduce a data race we have already repaired.

In general, a1 may not occur in a method𝑚′ that is called directly by𝑚, as in Fig. 10, but in

another method called by𝑚′ or even further down the call tree. Similarly, a2 may not be part of𝑚,

but it may be included in another method called by𝑚 after calling𝑚′ (but before await 𝑟), and so

on. Next, we describe precisely the transformation that suffices to repair a given data race.

Any two racing actions have a common ancestor in the call orderCOwhich is a call action. This is

at least the call action of main. The least common ancestor of a1 and a2 in CO among call actions is

denoted by LCACO (a1, a2). Formally, LCACO (a1, a2) is a call action a𝑐 = (𝑖, call(𝑗)) s.t. (a𝑐 , a1) ∈ CO,

(a𝑐 , a2) ∈ CO, and for each other call action a
′
𝑐 , if (a𝑐 , a′𝑐) ∈ CO then (a′𝑐 , a1) ∉ CO. For instance, the

call action corresponding to r1 = call m on the right of Fig. 10 is the least common ancestor of the

racing actions discussed above. The following lemma (see the supplementary material for a proof)

shows that this is the asynchronous call for which the matching await must be moved in order to

repair a given data race. It also identifies the position where the await matching LCACO (a1, a2)
should be moved in order to repair the data race. Intuitively, this is just before a2 if a2 is in the same

method as LCACO (a1, a2), or more generally, just before the last statement in the same method

which precedes a2 in the call order. On the right of Fig. 10, await r1 has to be moved before the

statement r2 = x, which plays the role of a2.

Lemma 6.3. Let (a1, a2) be a data race in a trace 𝜏 of an asynchronization 𝑃𝑎 , and a𝑐 = (𝑖, call(𝑗)) =
LCACO (a1, a2). Then, 𝜏 contains a unique action a𝑤 = (𝑖, await(𝑗)) and a unique action a such that:

• (a, a𝑤) ∈ MO, and a is the latest action in the method order MO such that (a𝑐 , a) ∈ MO and

(a, a2) ∈ CO∗ (CO∗ denotes the reflexive closure of CO).
async method Main {

r1 = call m;

if ∗
r2 = x;

else

r3 = y;

await r1;

}

async method m {

await ∗
retVal = x;

x = input;

return;

}

async method Main {

r1 = call m;

if ∗
await r1;

r2 = x;

else

r3 = y;

await r1;

}

async method m {

await ∗
retVal = x;

x = input;

return;

}

Fig. 13. Examples of asynchronizations.

Lemma 6.3 identifies a sufficient transformation for

repairing a data race (a1, a2): moving the await s𝑤 gener-

ating the action a𝑤 just before the statement s generating

a. This is sufficient because it ensures that every state-

ment that follows LCACO (a1, a2)5 in call order will be

executed before a and before any statement which suc-

ceeds a in call order, including a2. Note that moving the

await a𝑤 anywhere after awill not affect the concurrency

between a1 and a2.

The pair (s𝑐 , s), where s𝑐 is the call statement generat-

ing LCACO (a1, a2), is called the root cause of the data race
(𝑎1, 𝑎2). LetRepDRace(𝑃𝑎, s𝑐 , s) be themaximal asynchro-

nization 𝑃 ′𝑎 smaller than 𝑃𝑎 w.r.t. ≤, s.t. no await statement

5
We abuse the terminology and make no distinction between statements and actions.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Automated Synthesis of Asynchronizations 1:17

Algorithm 2 The procedureOptRelative for computing the optimal asynchronization of 𝑃 relative

to 𝑃𝑎 . RootCauseMinDRace(𝑃 ′𝑎) returns the root cause of a minimal data race of 𝑃 ′𝑎 w.r.t. ≺SO, or
⊥ if 𝑃 ′𝑎 is data race free.

1: procedure OptRelative(𝑃𝑎)
2: 𝑃 ′𝑎 ← 𝑃𝑎

3: root ← RootCauseMinDRace(𝑃 ′𝑎)
4: while root ≠ ⊥
5: 𝑃 ′𝑎 ← RepDRace(𝑃 ′𝑎, root)
6: root ← RootCauseMinDRace(𝑃 ′𝑎)
7: return 𝑃 ′𝑎

matching s𝑐 occurs after s on a CFG path. When the control-flow graph of the method contains

branches, the construction of RepDRace(𝑃𝑎, s𝑐 , s) consists of (1) replacing all await statements

matching s𝑐 that are reachable in the CFG from s with a single await statement placed just before s,

and (2) adding additional await statements in branches that “conflict” with the branch containing

s. This is to ensure the syntactic constraints described in §3. These additional await statements are

at maximal distance from the corresponding call statement because of the maximality requirement.

For instance, to repair the data race between r2 = x and x = input in the program on the left of

Fig. 13, the statement await r1 must be moved before r2 = x in the if branch, which implies that

another await must be added on the else branch. The result is given on the right of Fig. 13.

The following shows that repairing a minimal data race cannot introduce smaller data races (w.r.t.

≺SO), which ensures some form of monotonicity when repairing minimal data races iteratively.

Lemma 6.4. Let 𝑃𝑎 be an asynchronization, (a1, a2) a data race in 𝑃𝑎 that is minimal w.r.t. ≺SO, and
(s𝑐 , s) the root cause of (a1, a2). Then, RepDRace(𝑃𝑎, s𝑐 , s) does not admit a data race that is smaller

than (a1, a2) w.r.t. ≺SO.
 async method m’ {

 r’ = call m;

 s’’

 await r’;

 }

 async method m {

 sc: r = call _ ; s1

 s: ... s2

 s’

 sw: await r;

 }

CO

CO*CO*

CO*

Fig. 14. An excerpt of an asynchronous program.

Proof. The onlymodification in the program 𝑃 ′𝑎 =

RepDRace(𝑃𝑎, s𝑐 , s) compared to 𝑃𝑎 is themovement

of the await s𝑤 matching the call s𝑐 to be before

the statement s in a method 𝑚. The concurrency

added in 𝑃 ′𝑎 that was not possible in 𝑃𝑎 is between

actions (a′, a′′) generated by statements s
′
and s

′′
,

respectively, as shown in Fig. 14. W.l.o.g., we assume

that (a′, a′′) ∈ SO. The statements s1 and s2 are those

generating a1 and a2, respectively. The statement

s
′
is related by CO∗ to some statement in 𝑚 that

follows s, and s
′′
is related by CO∗ to some statement that follows the call to𝑚 in the caller of𝑚.

Note that s
′
is ordered by ≺ after s2. Since (a1, a2) ∈ SO and (a′, a′′) ∈ SO then s2 ≺ s

′′
and s1 ≺ s

′
.

Thus, any new data race (a′, a′′) in 𝑃 ′𝑎 that was not reachable in 𝑃𝑎 is bigger than (a1, a2). □

6.3 A Procedure for Computing Optimal Asynchronizations
Given an asynchronization 𝑃𝑎 , the procedure OptRelative in Algorithm 2 computes the optimal

asynchronization relative to 𝑃𝑎 by repairing data races iteratively until the program becomes data

race free. The following theorem states that correctness of this procedure.

Theorem 6.5. Given an asynchronization 𝑃𝑎 ∈ Async[𝑃, 𝐿, 𝐿𝑎], OptRelative(𝑃𝑎) returns the
optimal asynchronization of 𝑃 relative to 𝑃𝑎 .

Proof. We need to show that any immediate successor 𝑃1

𝑎 of the output 𝑃 ′𝑎 = OptRelative(𝑃𝑎)
that is also smaller than 𝑃𝑎 (w.r.t. ≤) admits data races. By the definition of ≤, 𝑃1

𝑎 is obtained by

moving exactly one await statement s𝑤 in a method𝑚 of 𝑃 ′𝑎 further away from the matching call s𝑐 .

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Sidi Mohamed Beillahi, Ahmed Bouajjani, Constantin Enea, and Shuvendu Lahiri

Since 𝑃1

𝑎 ≤ 𝑃𝑎 , the position of s𝑤 in the output 𝑃 ′𝑎 is due to repairing a data race between two actions

a1 and a2 with a root-cause (s𝑐 , s), for some s, on some program 𝑃 ′𝑎 ≤ 𝑃 ′′𝑎 ≤ 𝑃𝑎 . We show that these

actions form a data race in 𝑃1

𝑎 . These actions are reachable in an execution of 𝑃1

𝑎 because every

method𝑚′ that is called by𝑚 between s𝑐 and s𝑤 (s𝑐 included), or that follows𝑚
′
in the call-graph

of 𝑃1

𝑎 (or 𝑃 ′′𝑎) has exactly the same code as in 𝑃 ′′𝑎 , i.e., the placement of the awaits in those methods

is the same as in 𝑃 ′′𝑎 (call graphs remain identical between different asynchronizations). This is due

to the fact that any data race that would lead to moving an await in one of those methods is before

(a1, a2) in the order ≺SO. Since s𝑤 in 𝑃1

𝑎 is placed after s, we get that a1 and a2 are also concurrent

in that execution of 𝑃1

𝑎 , which concludes the proof. □

OptRelative(𝑃𝑎) iterates the process of repairing a data race a number of times which is linear

in the size of the input. Indeed, each iteration of the loop results in moving an await closer to the

matching call and before at least one more statement from the original synchronous program 𝑃 .

The fact that data races are enumerated in the order defined by ≺SO guarantees a bound on the

number of times an await matching the same call is moved during the execution of OptRelative(𝑃𝑎).

In general, this bound is the number of statements covered by all the awaits matching the call in

the input program 𝑃𝑎 . Actually, this is a rather coarse bound. A more refined analysis has to take

into account the number of branches in the CFGs. For programs without conditionals or loops,

every await is moved at most once during the execution of OptRelative(𝑃𝑎). In the presence of

branches, a call to an asynchronous method may match multiple await statements (one for each

CFG path starting from the call), and the data races that these await statements may create may

be incomparable w.r.t. ≺SO. Therefore, for a call statement s𝑐 , let |s𝑐 | be the sum of |Cover(s𝑤) | for
every await s𝑤 matching s𝑐 in 𝑃𝑎 .

Lemma 6.6. For any asynchronization 𝑃𝑎 ∈ Async[𝑃, 𝐿, 𝐿𝑎] and call statement s𝑐 in 𝑃𝑎 , the while

loop in OptRelative(𝑃𝑎) does at most |s𝑐 | iterations that result in moving an await matching s𝑐 .

Proof. We consider first the case without conditionals or loops, and we show by contradiction

that every await statement s𝑤 is moved at most once during the execution of OptRelative(𝑃𝑎),

i.e., there exists at most one iteration of the while loop which changes the position of s𝑤 . Suppose

that the contrary holds for an await s𝑤 . Let (a1, a2), and (a3, a4) be the data races repaired by the

first and second moves of s𝑤 , respectively. By Lemma 6.3, there exist two actions a and a
′
such that

(a𝑐 , a) ∈ MO, (a, a2) ∈ CO∗, (a, a𝑤) ∈ MO and (a𝑐 , a′) ∈ MO, (a′, a4) ∈ CO∗, (a′, a𝑤) ∈ MO

where a𝑤 = (𝑖, await(𝑗)) and a𝑐 = (𝑖, call(𝑗)) are the asynchronous call action and the matching

await action. Let s2 and s4 be the statements generating the two actions a2 and a4, respectively.

Then, we have either s2 ≺ s4 or s2 = s4, and both cases imply that (a, a′) ∈ MO∗. Thus, moving

the await statement generating a𝑤 before the statement generating a implies that it is also placed

before the statement generating a
′
(that occurs after a in the same method). Thus, the first move of

the await s𝑤 repaired both data races, which is contradiction.

In the presence of conditionals or loops, moving an await up in one branch may correspond

to adding multiple awaits in the other conflicting branches. Also, one call in the program may

correspond to multiple awaits on different branches. However, every repair of a data race consists

in moving one await closer to the matching call s𝑐 and before one more statement covered by some

await matching s𝑐 in the input 𝑃𝑎 . □

6.4 Computing Root Causes of Minimal Data Races
We present a reduction from the problem of computing root causes of minimal data races to

reachability (assertion checking) in sequential programs. This reduction builds on a program

instrumentation for checking if there exists a minimal data race that involves two given statements

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Automated Synthesis of Asynchronizations 1:19

1 Add before s1:

2 if (lastTaskDelayed == ⊥ && *)

3 lastTaskDelayed := myTaskId();

4 DescendantDidAwait := thisHasDoneAwait;

5 return

7 Add before s2:

8 if (task_s𝑐 == myTaskId())

9 s := s2;

10 assert (lastTaskDelayed == ⊥ || !DescendantDidAwait);

13 Replace every statement ``await r'' with:

14 if(r == lastTaskDelayed) then

15 if (!DescendantDidAwait)

16 DescendantDidAwait := thisHasDoneAwait;

17 lastTaskDelayed := myTaskId();

18 return

19 else

20 thisHasDoneAwait := true

22 Add before every statement ``r := call m'':

23 if (task_s𝑐 == myTaskId()) then

24 s := this statement;

26 Add after every statement ``r := call m'':

27 if (r == lastTaskDelayed)

28 s𝑐 := this statement;

29 task_s𝑐 := myTaskId();

Fig. 15. A program instrumentation for computing the root cause of a minimal data race between the
statements s1 and s2 (if any). All variables except for thisHasDoneAwait are program (global) variables.
thisHasDoneAwait is a local variable. The value ⊥ represents an initial value of a variable. The variables s𝑐
and s store the (program counters of the) statements representing the root cause. The method myTaskId
returns the id of the current task.

(s1, s2), whose correctness relies on the assumption that another pair of statements cannot produce

a smaller data race. This instrumentation is used in an iterative process where pairs of statements

are enumerated according to the colexicographic order induced by ≺. This specific enumeration

ensures that the assumption made for the correctness of the instrumentation is satisfied.

Given an asynchronization 𝑃𝑎 , the instrumentation described in Fig. 15 represents a synchronous

program where all await statements are replaced with synchronous code (lines 14–20). This

instrumentation simulates asynchronous executions of 𝑃𝑎 where methods may be only partially

executed, modeling await interruptions. It reaches an error state (see the assert at line 10) when

an action generated by s1 is concurrent with an action generated by s2, which represents a data

race, provided that s1 and s2 access a common program variable (these statements are assumed to

be given as input). Also, the values of s𝑐 and s when reaching the assertion violation represent the

root-cause of this data race.

The instrumentation simulates an execution of 𝑃𝑎 to search for a data race as follows (we discuss

the identification of the root-cause afterwards):

• It executes under the synchronous semantics until an instance of s1 is non-deterministically

chosen as a candidate for the first action in the data race (s1 can execute multiple times if it

is included in a loop for instance). The current invocation is interrupted when it is about to

execute this instance of s1 and its task id 𝑡0 is stored into lastTaskDelayed (see lines 2–5).

• Every invocation that transitively called 𝑡0 is interrupted when an await for an invocation

in this call chain (whose task id is stored into lastTaskDelayed) would have been executed

in the asynchronization 𝑃𝑎 (see line 18).

• Every other method invocation is executed until completion as in the synchronous semantics.

• When reaching s2, if s1 has already been executed (lastTaskDelayed is not ⊥) and at least

one invocation has only partially been executed, which is recorded in the boolean flag

DescendantDidAwait and which means that s1 is concurrent with s2, then the instrumen-

tation stops with an assertion violation.

A subtle point is that the instrumentation may execute code that follows an await 𝑟 even if the

task 𝑟 has been executed only partially, which would not happen in an execution of the original 𝑃𝑎 .

Here, we rely on the assumption that there exist no data race between that code and the rest of

the task 𝑟 . Such data races would necessarily involve two statements which are before s2 w.r.t. ≺.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Sidi Mohamed Beillahi, Ahmed Bouajjani, Constantin Enea, and Shuvendu Lahiri

Therefore, the instrumentation is correct only if it is applied by enumerating pairs of statements

(s1, s2) w.r.t. the colexicographic order induced by ≺.
Next, we describe the computation of the root-cause, i.e., the updates on the variables s𝑐 and

s. By definition, the statement s𝑐 in the root-cause should be a call that makes an invocation that

is in the call stack when s1 is reached. This can be checked using the variable lastTaskDelayed
that stores the id of the last such invocation popped from the call stack (see the test at line 27). The

statement s in the root-cause can be any call statement that has been executed in the same task as

s𝑐 (see the test at line 23), or s2 itself (see line 9).

Let [[𝑃𝑎, s1, s2]] denote the instrumentation in Fig. 15. We say that the values of s𝑐 and s when

reaching the assertion violation are the root cause computed by this instrumentation. The following

theorem states its correctness.

Theorem 6.7. If [[𝑃𝑎, s1, s2]] reaches an assertion violation, then it computes the root cause of a

minimal data race, or there exists (s3, s4) such that [[𝑃𝑎, s3, s4]] reaches an assertion violation and

(s3, s4) is before (s1, s2) in colexicographic order w.r.t. ≺.
Based on Theorem 6.7, we define an implementation of the procedure RootCauseMinDRace(𝑃𝑎)

used in computing optimal asynchronizations (Algorithm 2) as follows:

• For all pairs of read or write statements (s1, s2) in colexicographic order w.r.t. ≺.
– If [[𝑃𝑎, s1, s2]] reaches an assertion violation, then

∗ return the root cause computed by [[𝑃𝑎, s1, s2]]
• return ⊥

The order ≺ between read or write statements can be computed using a quadratic number of

reachability queries in the synchronous program 𝑃 . Therefore, s ≺ s
′
iff an instrumentation of 𝑃

that sets a flag when executing s and asserts that this flag is not set when executing s
′
reaches an

assertion violation. The following theorem states the correctness of the procedure above.

Theorem 6.8. RootCauseMinDRace(𝑃𝑎) returns the root cause of a minimal data race of 𝑃𝑎 w.r.t.

≺SO, or ⊥ if 𝑃 ′𝑎 is data race free.

This procedure performs a quadratic number of reachability queries in sequential programs.

Theorem 6.9. The complexity of RootCauseMinDRace is polynomial time modulo an oracle for

the reachability problem in sequential programs.

6.5 Asymptotic Complexity of Asynchronization Synthesis
We state the complexity of the asynchronization synthesis problem. Theorem 5.5 shows that its delay

complexity is polynomial modulo the complexity of OptRelative in Algorithm 2, which by the

results in this section, reduces to a polynomial number of reachability queries in sequential programs.

The reachability problem is PSPACE-complete for finite-state sequential programs [Godefroid and

Yannakakis 2013].

Theorem 6.10. The output complexity
6
and delay complexity of the asynchronization synthesis

problem is polynomial time modulo an oracle for reachability in sequential programs, and PSPACE for

finite-state programs.

This result is optimal, i.e., checking whether there exists a sound asynchronization which is

different from the trivial strong synchronization is PSPACE-hard (follows from a reduction from

the reachability problem).

Theorem 6.11. Checking whether there exists a sound asynchronization different from the strong

asynchronization is PSPACE-complete.

6
Note that all asynchronizations can be enumerated with polynomial space.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Automated Synthesis of Asynchronizations 1:21

Proof. For hardness, checking if a sequential program 𝑃 reaches a particular control location

ℓ can be reduced to the non-existence of a non-trivial sound asynchronization of a program 𝑃 ′

defined as follows: (1) define a new method𝑚 that writes to a new program variable 𝑥 , and insert a

call to𝑚 followed by a write to 𝑥 at location ℓ , and (2) insert a write to 𝑥 after every call statement

that calls a method in {𝑚′}∗, where𝑚′ is the method containing ℓ . Let𝑚𝑎 be an asynchronous

version of𝑚 obtained by inserting an await ∗ at the beginning. Then, ℓ is reachable in 𝑃 iff the

only sound asynchronization of 𝑃 ′ w.r.t. {𝑚𝑎} is the strong asynchronization. □

7 OPTIMAL ASYNCHRONIZATIONS USING DATA-FLOW ANALYSIS
We present a procedure for computing sound asynchronizations, based on a bottom-up inter-

procedural data-flow analysis. It computes optimal asynchronizations for abstractions of programs

where every Boolean condition in if-then-else statements or while loops is replaced with the

non-deterministic choice ∗.
For a program 𝑃 , we define an abstraction 𝑃#

where every conditional if ⟨𝑙𝑒⟩ {𝑆1} else {𝑆2} is
rewritten to if ∗ {𝑆1} else {𝑆2}, and every while ⟨𝑙𝑒⟩ {𝑆} is rewritten to if ∗ {𝑆}. Besides adding
the non-deterministic choice ∗, loops are unrolled exactly once. Every asynchronization 𝑃𝑎 of 𝑃

corresponds to an abstraction 𝑃#

𝑎 obtained by applying exactly the same rewriting.

𝑃#
is a sound abstraction of 𝑃 in terms of sound asynchronizations it admits. Unrolling loops

once is sound because every asynchronous call in a loop iteration should be waited for in the same

iteration (see the syntactic constraints in §3).

Theorem 7.1. If 𝑃#

𝑎 is a sound asynchronization of 𝑃#
w.r.t. 𝐿𝑎 , then 𝑃𝑎 is a sound asynchronization

of 𝑃 w.r.t. 𝐿𝑎 .

We present a procedure for computing optimal asynchronizations of 𝑃#
, relative to a given

asynchronization 𝑃#

𝑎 . This procedure traverses methods of 𝑃#

𝑎 in a bottom-up fashion, detects data

races using summaries of read/write accesses computed using a straightforward data-flow analysis,

and repairs data races using the schema presented in Section 6.2. Applying this procedure to a real

programming language requires an alias analysis to detect statements that may access the same

memory location (this is trivial in our language whose purpose is to simplify the exposition).

We consider an enumeration of methods called bottom-up order, which is the reverse of a

topological ordering of the call graph
7
. For each method𝑚, let R(𝑚) be the set of program variables

that𝑚 can read, which is defined as the union of R(𝑚′) for every method𝑚′ called by𝑚 and the set

of program variables read in statements in the body of𝑚. The set of variablesW(𝑚) that𝑚 canwrite

is defined in a similar manner. We define RW-var(𝑚) = (R(𝑚),W(𝑚)). We extend the notation

RW-var to statements as follows: RW-var(⟨𝑟 ⟩ := ⟨𝑥⟩) = ({𝑥}, ∅), RW-var(⟨𝑥⟩ := ⟨𝑙𝑒⟩) = (∅, {𝑥}),
RW-var(𝑟 := call𝑚) = RW-var(𝑚), and RW-var(s) = (∅, ∅), for any other type of statement 𝑠 .

Also, let CRW-var(𝑚) be the set of read or write accesses that𝑚 can do and that can be concurrent

with accesses that a caller of𝑚 can do after calling𝑚. These correspond to read/write statements

that follow an await in𝑚, or to accesses in CRW-var(𝑚′) for a method𝑚′ called by𝑚. These sets

of accesses can be computed using the following data-flow analysis: for all methods𝑚 ∈ 𝑃#

𝑎 in

bottom-up order, and for each statement s in the body of𝑚 from begin to end,

• If s is a call to𝑚′ and s is not reachable from an await in the CFG of𝑚

• CRW-var(𝑚) ← CRW-var(𝑚) ∪ CRW-var(𝑚′)
• If s is reachable from an await statement in the CFG of𝑚

• CRW-var(𝑚) ← CRW-var(𝑚) ∪ RW-var(s)

7
The nodes of the call graph are methods and there is an edge from a method𝑚1 to a method𝑚2 if𝑚1 contains a call

statement that calls𝑚2.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Sidi Mohamed Beillahi, Ahmed Bouajjani, Constantin Enea, and Shuvendu Lahiri

We use (R1,W1) ⊲⊳ (R2,W2) to denote the fact thatW1 ∩ (R2 ∪W2) ≠ ∅ orW2 ∩ (R1 ∪W1) ≠ ∅
(i.e., a conflict between read/write accesses). We define the procedure OptRelative

#
that given an

asynchronization 𝑃#

𝑎 works as follows:

• For all methods𝑚 ∈ 𝑃#

𝑎 in bottom-up order, and for each statement s in the body of𝑚 from

begin to end,

– If s occurs between 𝑟 := call 𝑚′ and await 𝑟 (for some 𝑚′), and RW-var(s) ⊲⊳

CRW-var(𝑚′), then 𝑃#

𝑎 ← RepDRace(𝑃#

𝑎, 𝑟 := call𝑚′, 𝑠)
• Return 𝑃#

𝑎

The following theorem states the correctness of OptRelative
#
. This procedure repairs data races

in an order which is ≺SO with some exceptions that do not affect optimality, i.e., the number of

times an await matching the same call can be moved. For instance, if a method𝑚 calls two other

methods𝑚1 and𝑚2 in this order, the procedure above may handle𝑚2 before𝑚1, i.e., repair data

races between actions that originate from𝑚2 before data races that originate from𝑚1, although

the former are bigger than the latter in ≺SO. This does not affect optimality because those repairs

are “independent”, i.e., any repair in𝑚2 cannot influence a repair in𝑚1, and vice-versa. The crucial

point is that this procedure repairs data races between actions that originate from a method𝑚

before data races that involve actions in methods preceding𝑚 in the call graph, which are bigger

in ≺SO than the former.

Theorem 7.2. OptRelative
(𝑃#

𝑎) returns an optimal asynchronization relative to 𝑃#

𝑎 .

Since OptRelative
#
is based on a single bottom-up traversal of the call graph of the input

asynchronization 𝑃#

𝑎 , Theorem 5.5 implies the following result.

Theorem 7.3. The delay complexity of the asynchronization synthesis problem restricted to ab-

stracted programs 𝑃#
is polynomial time.

8 MULTI-THREADED REFACTORINGS
We discuss an extension of our framework to multi-threaded refactorings that rewrite a sequential

program into a multi-threaded program where every method invocation is executed on a different

thread. A caller can wait for a callee to complete using a join primitive. A start primitive for

spawning a new thread is the counterpart of an asynchronous call while join is the counterpart of

await. For instance, Fig. 16 lists a sequential program, a possible asynchonization, and amulti-thread

refactoring (both refactorings place the awaits/joins as far away as possible from the calls).

An important difference between start/join and async/await is the happens-before order relation.

For instance, the asynchronization on the center of Fig. 16 assigns 1 to x (line 11) before it assigns

2 to x (line 4), as in the original sequential program. However, the multi-thread program on the

right of Fig. 16 may execute these two assignments in any order, and admits a behavior that is not

possible in the sequential program (assigning 2 before assigning 1). Repairing this data-race consists

in moving the join at line 5 to occur before assigning 2 to x at line 4. In general, the happens-before

order is weaker compared to an analogous asynchronization, where awaits are placed as the joins,

which implies that any multi-threaded refactoring can be rewritten to an asynchronization. The

vice-versa may not be possible as shown in this example.

Despite this difference, it can still be proved that there exists a unique multi-threaded refactoring

that is sound, i.e., does not admit data races, and optimal, i.e., maximizes the distance between

start and join, a result similar to Lemma 5.2. Assuming by contradiction the existence of two

incomparable optimal and sound refactorings, one can show that moving a join in one refactoring

further away from the matching call as in the other refactoring does not introduce data races

(contradicting optimality). To compute optimal and sound multi-threaded refactorings, one can

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Automated Synthesis of Asynchronizations 1:23

1 void Main() {

2 F();

4 x = 2;

6 }

8 void F() {

9 IO();

11 x = 1;

13 }

1 async Task MainAsync() {

2 Task t1 = F();

4 x = 2;

5 await t1;

6 }

8 async Task F() {

9 Task t2 = IOAsync();

11 x = 1;

12 await t2;

13 }

1 void Main() {

2 Thread thr1 = new Thread(F);

3 thr1.Start();

4 x = 2;

5 thr1.Join();

6 }

8 void F() {

9 Thread thr2 = new Thread(IO);

10 thr2.Start();

11 x = 1;

12 thr2.Join();

13 }

Fig. 16. A synchronous C# program, an asynchronization, and a multi-threaded refactoring.

apply the same iterative process of repairing data-races (the happens-before reflects multi-threading

instead of async/await), prioritizing data races involving statements that would execute first in the

sequential program. The repairing of a data-race is similar and consists in moving a join up.

In contrast to async/await, moving a join up does not introduce new data races (since no

new parallelism is introduced). This implies that all the predecessors of a sound multi-threaded

refactoring are also sound, i.e., the set of sound multi-threaded refactorings is downward closed.

9 EXPERIMENTAL EVALUATION
We present an empirical evaluation of our asynchronization enumeration approach, where optimal

asynchronizations are computed using the data-flow analysis described in Section 7. We consider a

benchmark consisting mostly of asynchronous C# programs extracted from open-source GitHub

projects. We evaluate the effectiveness of our technique in reproducing the original program as an

asynchronization of a program where asynchronous calls are reverted to synchronous calls, along

with other sound asynchronizations.

Implementation.We developped a prototype tool that relies on the Roslyn .NET compiler plat-

form [Roslyn 2021] to construct CFGs for methods in a given C# program. This prototype sup-

ports C# programs written in SSA form that include basic conditional or looping constructs and

async/await as concurrency primitives. It assumes that any alias information is provided apriori;

these constraints can be removed in the future with more engineering effort. Object fields are

interpreted as program variables in the terminology of the program syntax in Section 3 (data races

concern accesses to object fields).

The tool takes as input a possibly asynchronous program, and a mapping between synchronous

and asynchronous variations of base methods in this program. It reverts every asynchronous call

to a synchronous call, and it enumerates sound asynchronizations of the obtained program (using

Algorithm 1).

Benchmark. Our evaluation uses a benchmark outlined in Table 2. This contains 5 synthetic

examples (variations of the program in Fig. 1), 9 programs extracted from open-source C# GitHub

projects (their name is a prefix of the repository name), and 2 programs inspired by questions on

stackoverflow.com about async/await in C# (their name ends in Stackoverflow). Overall, there

are 13 base methods involved in computing asynchronizations of these programs (that have both

synchronous and asynchronous versions), which come from 5 C# libraries (System.IO, System.Net,

Windows.Storage, Microsoft.WindowsAzure.Storage, and Microsoft.Azure.Devices). They are modeled

as described in Section 3.

Evaluation. The last five columns of Table 2 list data concerning the application of our tool. The

column async lists the number of outputted sound asynchronizations. In general, the number of

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 Sidi Mohamed Beillahi, Ahmed Bouajjani, Constantin Enea, and Shuvendu Lahiri

Table 2. Empirical results. Syntactic characteristics of input programs: lines of code (loc), number of meth-
ods (m), number of method calls (c), number of asynchronous calls (ac), number of awaits that could be
placed at least one statement away from the matching call (await#). Data concerning the enumeration of
asynchronizations: number of awaits that were placed at least one statement away from the matching call
(await), number of races discovered and repaired (races), number of statements that the awaits in the optimal
asynchronization are coveringmore than in the input program (cover), number of computed asynchronizations
(async), and running time (t).

Program loc m c ac await# await races cover async t(s)

SyntheticBenchmark-1 77 3 6 5 4 4 5 0 9 5

SyntheticBenchmark-2 115 4 12 10 6 3 3 0 8 5

SyntheticBenchmark-3 168 6 16 13 9 7 4 0 128 9

SyntheticBenchmark-4 171 6 17 14 10 8 5 0 256 55

SyntheticBenchmark-5 170 6 17 14 10 8 9 0 272 138

Azure-Remote 520 10 14 5 0 0 0 0 1 5

Azure-Webjobs 190 6 14 6 1 1 0 1 3 4

FritzDectCore 141 7 11 8 1 1 0 1 2 5

MultiPlatform 53 2 6 4 2 2 0 2 4 5

NetRpc 887 13 18 11 4 1 3 0 3 5

TestAZureBoards 43 3 3 3 0 0 0 0 1 4

VBForums-Viewer 275 7 10 7 3 2 1 1 6 5

Voat 178 3 6 5 2 1 1 1 4 10

WordpressRESTClient 133 3 10 8 4 2 1 0 4 5

ReadFile-Stackoverflow 47 2 3 3 1 0 1 0 1 6

UI-Stackoverflow 50 3 4 4 3 3 3 0 12 5

asynchronizations depends on the number of invocations (column ac in Table_1) and the size of the

code blocks between an invocation and the instruction using its return value (column await# gives

the number of non-empty blocks). The number of sound asynchronizations depends roughly, on

how many of these code blocks are racing with the method body. These asynchronizations contain

awaits that are at a non-zero distance from the matching call (non-zero values in column await)

and for many Github programs, this distance is bigger than in the original program (non-zero

values in column cover)
8
. This shows that we are able to increase the distances between awaits

and their matching calls for those programs. On average the distance between awaits and their

matching calls in optimal asynchronizations for non synthetic benchmarks is 1.27 statements.

With few exceptions, each program admits multiple sound asynchronizations (values in col-

umn async bigger than one), which makes the focus on the delay complexity relevant. Also, this

leaves the possibility of making a choice based on other criteria, e.g., performance metrics. While

asynchronizations are computed statically, their performance can be derived only dynamically

(executing them). In general, we are not aware of any syntactic criteria that can guide towards

computing a best solution w.r.t. performance in practice. These results show that our techniques

have the potential of becoming the basis of a refactoring tool allowing programmers to improve

their usage of the async/await primitives. The artifacts are available in an anonymous GitHub

repository [Experiments 2021].

10 RELATEDWORK
There are many works on synthesizing or repairing concurrent programs in the standard multi-

threading model, e.g., automatic parallelization in compilers [Bacon et al. 1994; Blume et al. 1996;

Han and Tseng 2001], or synchronization synthesis [Bloem et al. 2014; Cerný et al. 2015, 2013, 2014;

Clarke and Emerson 2008; Gupta et al. 2015; Manna and Wolper 1984; Vechev et al. 2009, 2010].

Our paper focuses on the use of the async/await primitives which poses specific challenges that

are not covered in these works. For instance, synthesizing lock placements does not admit unique

optimal solutions w.r.t. a syntactic order as for async/await.

8
The synthetic examples are weakest asynchronizations to start with.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Automated Synthesis of Asynchronizations 1:25

Program Refactoring. A number of program refactoring tools have been proposed for convert-

ing C# programs using explicit callbacks into async/await programs [Okur et al. 2014], Android

programs using AsyncTask into programs that use IntentService [Lin et al. 2015], or sequential

applications into parallel applications using concurrent libraries for Java [Dig et al. 2009]. The

C# related tool [Okur et al. 2014], which is the closest to our work, makes it possible to repair

misusage of async/await that might result in deadlocks. Their repairing mechanism is based on

forcing the continuations after the first await to run on background threads. This tool cannot

modify procedure calls to be asynchronous as in our work. Compared to all these works, we give

an algorithmic framework with precise specifications and complexity analysis.

Data Race Detection. There are many works that study dynamic data race detection using

happens-before and lock-set analysis, or timing-based detection, e.g., [Flanagan and Freund 2009;

Kini et al. 2017; Li et al. 2019; Raman et al. 2010; Smaragdakis et al. 2012]. [Raman et al. 2010]

proposes a dynamic data race detector for async-finish task-parallel programs by adapting the

algorithm proposed in [Feng and Leiserson 1997] that computes abstract summaries of parallel

tasks. [Li et al. 2019] presents a testing technique for finding data races in C# and F# programs,

based on inserting timing delays in unsafe methods (e.g., methods that access memory without

locking), and a monitor for finding data races. These methods could be used to approximate our

reduction from data race checking to reachability in sequential programs.

A number of works [Blackshear et al. 2018; Engler and Ashcraft 2003; Liu and Huang 2018]

propose static analyses for finding data races. [Blackshear et al. 2018] designs a compositional data

race detector for multi-threaded Java programs, based on an inter-procedural analysis assuming

that any two public methods can execute in parallel. Similar to [Santhiar and Kanade 2017], they

precompute method summaries in order to extract potential racy accesses. These approaches are

similar to the analysis we present in Section 7, but they concern a different programming model.

Analyzing Asynchronous Programs. There exist several works that propose program analyses

for various classes of asynchronous programs. [Bouajjani and Emmi 2012; Ganty and Majumdar

2012] give complexity results for the reachability problem, and [Santhiar and Kanade 2017] proposes

a static analysis for deadlock detection in C# programs that use both asynchronous and synchronous

wait primitives. This work relies on the static analysis introduced in [Madhavan et al. 2012] for

computing method summaries in terms of points-to relations. [Bouajjani et al. 2017] investigates

the problem of checking whether Java UI asynchronous programs have the same set of behaviors

as sequential programs where roughly, asynchronous tasks are executed synchronously.

11 CONCLUSION
We have proposed a framework for refactoring sequential programs to equivalent asynchronous

programs that rely on the async/await primitives. We have determined precise complexity bounds

for the problem of computing a sound asynchronization that maximizes the distance between

asyncs and awaits, which in theory, increases the level of parallelism, and the problem of com-

puting all sound asynchronizations. The latter problem is useful in a context where performance

measures cannot be derived statically, which is usually the case, and makes it possible to compute

a sound asynchronization that maximizes performance by separating concerns (enumerate sound

asynchronizations and evaluate performance separately). We have also investigated the related

problem of synthesizing sound multi-threaded refactorings where every method call is executed by

a different thread, showing that our techniques extend quite easily, which witnesses the “robustness”

of our framework. On the practical side, we have introduced an approximated synthesis procedure

based on data-flow analysis that we implemented and evaluated on a benchmark of non-trivial C#

programs extracted from open-source repositories.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 Sidi Mohamed Beillahi, Ahmed Bouajjani, Constantin Enea, and Shuvendu Lahiri

The asynchronous programs rely exclusively on async/await and are deadlock-free by definition.

Deadlocks can occur in a mix of async/await with “explicit” multi-threading that includes blocking

wait primitives. Our paper deals with these two paradigms separately, but extending our approach

for such programs is an interesting direction for future work.

REFERENCES
David F. Bacon, Susan L. Graham, and Oliver J. Sharp. 1994. Compiler Transformations for High-Performance Computing.

ACM Comput. Surv. 26, 4 (1994), 345–420. https://doi.org/10.1145/197405.197406

Gavin M. Bierman, Claudio V. Russo, Geoffrey Mainland, Erik Meijer, and Mads Torgersen. 2012. Pause ’n’ Play: Formalizing

Asynchronous C#. In ECOOP 2012 - Object-Oriented Programming - 26th European Conference, Beijing, China, June

11-16, 2012. Proceedings (Lecture Notes in Computer Science), James Noble (Ed.), Vol. 7313. Springer, 233–257. https:

//doi.org/10.1007/978-3-642-31057-7_12

Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey. 2018. RacerD: compositional static race detection.

Proc. ACM Program. Lang. 2, OOPSLA (2018), 144:1–144:28. https://doi.org/10.1145/3276514

Roderick Bloem, Georg Hofferek, Bettina Könighofer, Robert Könighofer, Simon Ausserlechner, and Raphael Spork. 2014.

Synthesis of synchronization using uninterpreted functions. In Formal Methods in Computer-Aided Design, FMCAD 2014,

Lausanne, Switzerland, October 21-24, 2014. IEEE, 35–42. https://doi.org/10.1109/FMCAD.2014.6987593

William Blume, Ramon Doallo, Rudolf Eigenmann, John Grout, Jay Hoeflinger, Thomas Lawrence, Jaejin Lee, David A.

Padua, Yunheung Paek, William M. Pottenger, Lawrence Rauchwerger, and Peng Tu. 1996. Parallel Programming with

Polaris. IEEE Computer 29, 12 (1996), 87–81. https://doi.org/10.1109/2.546612

Ahmed Bouajjani and Michael Emmi. 2012. Analysis of recursively parallel programs. In Proceedings of the 39th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA,

January 22-28, 2012, John Field and Michael Hicks (Eds.). ACM, 203–214. https://doi.org/10.1145/2103656.2103681

Ahmed Bouajjani, Michael Emmi, Constantin Enea, Burcu Kulahcioglu Ozkan, and Serdar Tasiran. 2017. Verifying Robustness

of Event-Driven Asynchronous Programs Against Concurrency. In Programming Languages and Systems - 26th European

Symposium on Programming, ESOP 2017, Held as Part of the European Joint Conferences on Theory and Practice of Software,

ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings (Lecture Notes in Computer Science), Hongseok Yang (Ed.),

Vol. 10201. Springer, 170–200. https://doi.org/10.1007/978-3-662-54434-1_7

Pavol Cerný, Edmund M. Clarke, Thomas A. Henzinger, Arjun Radhakrishna, Leonid Ryzhyk, Roopsha Samanta, and

Thorsten Tarrach. 2015. From Non-preemptive to Preemptive Scheduling Using Synchronization Synthesis. In Computer

Aided Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part

II (Lecture Notes in Computer Science), Daniel Kroening and Corina S. Pasareanu (Eds.), Vol. 9207. Springer, 180–197.

https://doi.org/10.1007/978-3-319-21668-3_11

Pavol Cerný, Thomas A. Henzinger, Arjun Radhakrishna, Leonid Ryzhyk, and Thorsten Tarrach. 2013. Efficient Synthesis for

Concurrency by Semantics-Preserving Transformations. In Computer Aided Verification - 25th International Conference,

CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings (Lecture Notes in Computer Science), Natasha Sharygina

and Helmut Veith (Eds.), Vol. 8044. Springer, 951–967. https://doi.org/10.1007/978-3-642-39799-8_68

Pavol Cerný, Thomas A. Henzinger, Arjun Radhakrishna, Leonid Ryzhyk, and Thorsten Tarrach. 2014. Regression-Free

Synthesis for Concurrency. In Computer Aided Verification - 26th International Conference, CAV 2014, Held as Part of the

Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings (Lecture Notes in Computer Science),

Armin Biere and Roderick Bloem (Eds.), Vol. 8559. Springer, 568–584. https://doi.org/10.1007/978-3-319-08867-9_38

Edmund M. Clarke and E. Allen Emerson. 2008. Design and Synthesis of Synchronization Skeletons Using Branching Time

Temporal Logic. In 25 Years of Model Checking - History, Achievements, Perspectives (Lecture Notes in Computer Science),

Orna Grumberg and Helmut Veith (Eds.), Vol. 5000. Springer, 196–215. https://doi.org/10.1007/978-3-540-69850-0_12

Danny Dig, John Marrero, and Michael D. Ernst. 2009. Refactoring sequential Java code for concurrency via concurrent

libraries. In 31st International Conference on Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada,

Proceedings. IEEE, 397–407. https://doi.org/10.1109/ICSE.2009.5070539

Dawson R. Engler and Ken Ashcraft. 2003. RacerX: effective, static detection of race conditions and deadlocks. In Proceedings

of the 19th ACM Symposium on Operating Systems Principles 2003, SOSP 2003, Bolton Landing, NY, USA, October 19-22,

2003, Michael L. Scott and Larry L. Peterson (Eds.). ACM, 237–252. https://doi.org/10.1145/945445.945468

Experiments. 2021. https://github.com/asynchronizations/artifact

Mingdong Feng and Charles E. Leiserson. 1997. Efficient Detection of Determinacy Races in Cilk Programs. In Proceedings

of the 9th Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA ’97, Newport, RI, USA, June 23-25, 1997,

Charles E. Leiserson and David E. Culler (Eds.). ACM, 1–11. https://doi.org/10.1145/258492.258493

Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: efficient and precise dynamic race detection. In Proceedings of

the 2009 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2009, Dublin, Ireland,

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/10.1145/197405.197406
https://doi.org/10.1007/978-3-642-31057-7_12
https://doi.org/10.1007/978-3-642-31057-7_12
https://doi.org/10.1145/3276514
https://doi.org/10.1109/FMCAD.2014.6987593
https://doi.org/10.1109/2.546612
https://doi.org/10.1145/2103656.2103681
https://doi.org/10.1007/978-3-662-54434-1_7
https://doi.org/10.1007/978-3-319-21668-3_11
https://doi.org/10.1007/978-3-642-39799-8_68
https://doi.org/10.1007/978-3-319-08867-9_38
https://doi.org/10.1007/978-3-540-69850-0_12
https://doi.org/10.1109/ICSE.2009.5070539
https://doi.org/10.1145/945445.945468
https://github.com/asynchronizations/artifact
https://doi.org/10.1145/258492.258493

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Automated Synthesis of Asynchronizations 1:27

June 15-21, 2009, Michael Hind and Amer Diwan (Eds.). ACM, 121–133. https://doi.org/10.1145/1542476.1542490

Pierre Ganty and Rupak Majumdar. 2012. Algorithmic verification of asynchronous programs. ACM Trans. Program. Lang.

Syst. 34, 1 (2012), 6:1–6:48. https://doi.org/10.1145/2160910.2160915

Patrice Godefroid and Mihalis Yannakakis. 2013. Analysis of Boolean Programs. In Tools and Algorithms for the Construction

and Analysis of Systems - 19th International Conference, TACAS 2013, Held as Part of the European Joint Conferences on

Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings (Lecture Notes in Computer Science),

Nir Piterman and Scott A. Smolka (Eds.), Vol. 7795. Springer, 214–229. https://doi.org/10.1007/978-3-642-36742-7_16

Ashutosh Gupta, Thomas A. Henzinger, Arjun Radhakrishna, Roopsha Samanta, and Thorsten Tarrach. 2015. Succinct

Representation of Concurrent Trace Sets. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015, Sriram K. Rajamani and David

Walker (Eds.). ACM, 433–444. https://doi.org/10.1145/2676726.2677008

Hwansoo Han and Chau-Wen Tseng. 2001. A Comparison of Parallelization Techniques for Irregular Reductions. In

Proceedings of the 15th International Parallel & Distributed Processing Symposium (IPDPS-01), San Francisco, CA, USA, April

23-27, 2001. IEEE Computer Society, 27. https://doi.org/10.1109/IPDPS.2001.924963

Dileep Kini, Umang Mathur, and Mahesh Viswanathan. 2017. Dynamic race prediction in linear time. In Proceedings of the

38th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain, June

18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 157–170. https://doi.org/10.1145/3062341.3062374

Guangpu Li, Shan Lu, Madanlal Musuvathi, Suman Nath, and Rohan Padhye. 2019. Efficient scalable thread-safety-violation

detection: finding thousands of concurrency bugs during testing. In Proceedings of the 27th ACM Symposium on Operating

Systems Principles, SOSP 2019, Huntsville, ON, Canada, October 27-30, 2019, Tim Brecht and Carey Williamson (Eds.). ACM,

162–180. https://doi.org/10.1145/3341301.3359638

Yu Lin, Semih Okur, and Danny Dig. 2015. Study and Refactoring of Android Asynchronous Programming (T). In 30th

IEEE/ACM International Conference on Automated Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015,

Myra B. Cohen, Lars Grunske, and Michael Whalen (Eds.). IEEE Computer Society, 224–235. https://doi.org/10.1109/

ASE.2015.50

Bozhen Liu and Jeff Huang. 2018. D4: fast concurrency debugging with parallel differential analysis. In Proceedings of the

39th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2018, Philadelphia, PA, USA,

June 18-22, 2018, Jeffrey S. Foster and Dan Grossman (Eds.). ACM, 359–373. https://doi.org/10.1145/3192366.3192390

Ravichandhran Madhavan, G. Ramalingam, and Kapil Vaswani. 2012. Modular Heap Analysis for Higher-Order Programs. In

Static Analysis - 19th International Symposium, SAS 2012, Deauville, France, September 11-13, 2012. Proceedings (Lecture Notes

in Computer Science), Antoine Miné and David Schmidt (Eds.), Vol. 7460. Springer, 370–387. https://doi.org/10.1007/978-

3-642-33125-1_25

Zohar Manna and Pierre Wolper. 1984. Synthesis of Communicating Processes from Temporal Logic Specifications. ACM

Trans. Program. Lang. Syst. 6, 1 (1984), 68–93. https://doi.org/10.1145/357233.357237

Semih Okur, David L. Hartveld, Danny Dig, and Arie van Deursen. 2014. A study and toolkit for asynchronous programming

in c#. In 36th International Conference on Software Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014, Pankaj

Jalote, Lionel C. Briand, and André van der Hoek (Eds.). ACM, 1117–1127. https://doi.org/10.1145/2568225.2568309

Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin T. Vechev, and Eran Yahav. 2010. Efficient Data Race Detection for

Async-Finish Parallelism. In Runtime Verification - First International Conference, RV 2010, St. Julians, Malta, November

1-4, 2010. Proceedings (Lecture Notes in Computer Science), Howard Barringer, Yliès Falcone, Bernd Finkbeiner, Klaus

Havelund, Insup Lee, Gordon J. Pace, Grigore Rosu, Oleg Sokolsky, and Nikolai Tillmann (Eds.), Vol. 6418. Springer,

368–383. https://doi.org/10.1007/978-3-642-16612-9_28

Roslyn. 2021. https://github.com/dotnet/roslyn

Anirudh Santhiar and Aditya Kanade. 2017. Static deadlock detection for asynchronous C# programs. In Proceedings of the

38th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain, June

18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 292–305. https://doi.org/10.1145/3062341.3062361

Yannis Smaragdakis, Jacob Evans, Caitlin Sadowski, Jaeheon Yi, and Cormac Flanagan. 2012. Sound predictive race detection

in polynomial time. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012, John Field and Michael Hicks (Eds.). ACM, 387–400.

https://doi.org/10.1145/2103656.2103702

Martin T. Vechev, Eran Yahav, and Greta Yorsh. 2009. Inferring Synchronization under Limited Observability. In Tools and

Algorithms for the Construction and Analysis of Systems, 15th International Conference, TACAS 2009, Held as Part of the

Joint European Conferences on Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings

(Lecture Notes in Computer Science), Stefan Kowalewski and Anna Philippou (Eds.), Vol. 5505. Springer, 139–154. https:

//doi.org/10.1007/978-3-642-00768-2_13

Martin T. Vechev, Eran Yahav, and Greta Yorsh. 2010. Abstraction-guided synthesis of synchronization. In Proceedings of the

37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2010, Madrid, Spain, January

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/10.1145/1542476.1542490
https://doi.org/10.1145/2160910.2160915
https://doi.org/10.1007/978-3-642-36742-7_16
https://doi.org/10.1145/2676726.2677008
https://doi.org/10.1109/IPDPS.2001.924963
https://doi.org/10.1145/3062341.3062374
https://doi.org/10.1145/3341301.3359638
https://doi.org/10.1109/ASE.2015.50
https://doi.org/10.1109/ASE.2015.50
https://doi.org/10.1145/3192366.3192390
https://doi.org/10.1007/978-3-642-33125-1_25
https://doi.org/10.1007/978-3-642-33125-1_25
https://doi.org/10.1145/357233.357237
https://doi.org/10.1145/2568225.2568309
https://doi.org/10.1007/978-3-642-16612-9_28
https://github.com/dotnet/roslyn
https://doi.org/10.1145/3062341.3062361
https://doi.org/10.1145/2103656.2103702
https://doi.org/10.1007/978-3-642-00768-2_13
https://doi.org/10.1007/978-3-642-00768-2_13

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Sidi Mohamed Beillahi, Ahmed Bouajjani, Constantin Enea, and Shuvendu Lahiri

17-23, 2010, Manuel V. Hermenegildo and Jens Palsberg (Eds.). ACM, 327–338. https://doi.org/10.1145/1706299.1706338

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/10.1145/1706299.1706338

	Abstract
	1 Introduction
	2 Overview
	3 Asynchronous Programs
	4 Synthesizing Asynchronous Programs
	4.1 Asynchronizations of a Synchronous Program
	4.2 Problem Definition

	5 Enumerating Sound Asynchronizations
	5.1 Optimal Asynchronization
	5.2 Enumeration Algorithm

	6 Computing Optimal Asynchronizations
	6.1 Data Race Ordering
	6.2 Repairing Data Races
	6.3 A Procedure for Computing Optimal Asynchronizations
	6.4 Computing Root Causes of Minimal Data Races
	6.5 Asymptotic Complexity of Asynchronization Synthesis

	7 Optimal Asynchronizations Using Data-Flow Analysis
	8 Multi-threaded Refactorings
	9 Experimental Evaluation
	10 Related Work
	11 Conclusion
	References

