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Asynchronous programming is widely adopted for building responsive and efficient software. Modern lan-

guages such as C# provide async/await primitives to simplify the use of asynchrony. However, the use of these

primitives remains error-prone because of the non-determinism in their semantics. In this paper, we propose

an approach for refactoring a given sequential program into an asynchronous program that uses async/await,

called asynchronization. The refactoring process is parametrized by a set of methods to replace with given

asynchronous versions, and it is constrained to avoid introducing data races. Since the space of possible

solutions is exponential in general, we focus on characterizing the delay complexity that quantifies the delay

between two consecutive and distinct outputs. We show that this is polynomial time modulo an oracle for

solving reachability (assertion checking) in sequential programs. We also describe a pragmatic approach based

on an interprocedural data-flow analysis with polynomial-time delay complexity. The latter approach has been

implemented and evaluated on a number of non-trivial C# programs extracted from open-source repositories.

1 INTRODUCTION
Asynchronous programming is widely adopted for building responsive and efficient software.

Unlike synchronous procedure calls, asynchronous procedure calls may run only partially and

return the control to their caller. Later, when the callee finishes execution, a callback procedure

registered by the caller is invoked.

As an alternative to the tedious model of asynchronous programming that required explicitly reg-

istering callbacks with asynchronous calls, C# 5.0 [Bierman et al. 2012] introduced the async/await

primitives. These primitives allow the programmer to write code in a familiar sequential style

without explicit callbacks. An asynchronous procedure, marked by the keyword async, returns
a task object that the caller uses to “await” it. Awaiting may suspend the execution of the caller,

if the awaited task did not finish, but does not block the thread it is running on. The code after

the await is the continuation that is automatically called back when the callee result is ready.

For instance, on the right of Figure 1, the method ContentLength calls an asynchronous method

GetStringAsync that returns a task object t5 used to await it at line 24. Executing this await sus-

pends the execution of ContentLength and returns the control to its caller MainAsync, assuming

that GetStringAsync did not finish. Passing the control to the caller is a constraint of the await

semantics. When GetStringAsync finishes and the thread is idle, the continuation after line 24 is

scheduled. This paradigm has become popular across many languages, eg, C++, JavaScript, Python.

While simplifying the writing of asynchronous programs, the async/await primitives introduce

concurrency which is notoriously complex. Depending on the scheduler, the code in between a call

and a matching await (referring to the same task) may execute before some part of the awaited

task (if the latter passed the control to its caller before finishing), or after the awaited task finished.

For instance, on the right of Figure 1, the assignment x=0 in MainAsync between the call and

the await of ReadFile may execute before ReadFile finishes, if the await in ReadFile suspends
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1 void Main(string url0) {

2 string url1 = ReadFile("url1.txt");

3 x = 0;

4 int val0 = ContentLength(url0);

7 int val1 = ContentLength(url1);

9 int r = x;

10 Debug.Assert(r == val0 + val1);

11 }

13 string ReadFile(string fn) {

14 StreamReader reader = new StreamReader(fn);

15 string content = reader.ReadToEnd();

17 return content;

18 }

20 int ContentLength(string url) {

21 HttpClient clt = new HttpClient()

22 string urlContents = clt.GetString(url);

23 int r1 = x;

25 x = r1 + urlContents.Length;

26 return urlContents.Length;

27 }

1 async Task MainAsync(string url0) {

2 Task<string> t1 = ReadFile("url1.txt");

3 x = 0;

4 Task<int> t2 = ContentLength(url0);

5 string url1 = await t1;

6 int val0 = await t2;

7 Task<int> t3 = ContentLength(url1);

8 int val1 = await t3;

9 int r = x;

10 Debug.Assert(r == val0 + val1);

11 }

13 async Task<string> ReadFile(string fn) {

14 StreamReader reader = new StreamReader(fn);

15 Task<string> t4 = reader.ReadToEndAsync();

16 string content = await t4;

17 return content;

18 }

20 async Task<int> ContentLength(string url) {

21 HttpClient clt = new HttpClient();

22 Task<string> t5 = clt.GetStringAsync(url);

23 int r1 = x;

24 urlContents = await t5;

25 x = r1 + urlContents.Length;

26 return urlContents.Length;

27 }

Fig. 1. A synchronous C# program and an asynchronous refactoring (x is a static variable).

its execution and passes the control to MainAsync (when reaching the await at line 16 because

ReadToEndAsync did not finish), or after ReadFile finishes, otherwise (the call to ReadToEndAsync
finishes before reaching its matching await at line 16). The resemblance with sequential code can

be especially deceitful since this non-determinism is opaque. It is common that await instructions

are placed immediately after the corresponding call which limits the benefits that one can obtain

from executing code in the caller concurrently with code in the callee [Okur et al. 2014].

In this paper, we address the problem of writing efficient asynchronous code that uses async/await

primitives. We propose a procedure for automated synthesis of asynchronous programs equivalent

to a given synchronous (sequential) program 𝑃 . This can be seen as a way of refactoring synchronous

code to asynchronous code. Since solving this problem in its full generality would require checking

equivalence between arbitrary programs, which is known to be hard, we consider a restricted space

of asynchronous program candidates that are defined by substituting synchronous methods in 𝑃

with asynchronous versions (assumed to be behaviorally equivalent). The substituted methods are

supposed to be leaves of the call-tree, i.e., they do not call any other method in 𝑃 . Such programs are

called asynchronizations of 𝑃 . A practical instantiation of this problem is replacing IO synchronous

calls for, e.g., reading/writing files, managing http connections, with asynchronous versions.

For instance, let us consider the sequential C# program on the left of Fig. 1. The Main invokes
ReadFile and ContentLength in a synchronous way (using the standard call stack semantics).

ReadFile reads and returns the content of a file while ContentLength returns the length of the

text in a webpage. The two URLs given as input to ContentLength are given as input to Main or
read from some file using ReadFile. The program uses a variable x to aggregate the lengths of all

pages accessed by ContentLength. Note that this program passes the assertion at line 10.
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Automated Synthesis of Asynchronizations 1:3

The time-consuming primitives for reading files, StreamReader.ReadToEnd, or the content of a
webpage, HttpClient.GetString1, are an obvious choice for being replaced with equivalent asyn-

chronous counterparts, i.e., StreamReader.ReadToEndAsync and HttpClient.GetStringAsync,
respectively. Performing such tasks asynchronously can lead to significant boosts in performance.

The program on the right of Fig. 1 is an example of an asynchronization of the program on the

left where the calls to StreamReader.ReadToEnd and HttpClient.GetString are replaced with

asynchronous counterparts (assumed to have the same effect). The syntax of async/await imposes

that every method that transitively calls one of the substituted methods must also be declared to be

asynchronous, e.g., MainAsync and ContentLength. Then, an asynchronous call must be followed

by an await statement that specifies the control location where that task should have completed

(e.g., the return value should have been computed). For instance, the call to ReadToEndAsync at
line 15 is immediately followed by an await since the next instruction (at line 17) uses the value

computed by ReadToEndAsync. Therefore, synthesizing such refactoring boils down to finding a

correct placement of awaits for every method that transitively calls a substituted method (we do

not consider “deeper” refactoring like rewriting conditionals or loops).

We consider an equivalence relation between a synchronous program and an asynchronization

that corresponds to absence of data races in the asynchronization. Data race free asynchronizations

are called sound. Relying on absence of data races instead of a more precise equivalence relation like

equality of reachable sets of states could prevent enumerating some number of asynchronizations

that reach the same set of states as the original synchronous program. However, checking equality

of reachable sets of states is known to be hard in general, and relying on absence of data races is

a well established compromise. For instance, the asynchronization on the right of Fig. 1 is sound

(data-race free) since the two calls to ContentLength that access x do not “overlap” and both finish

before the read at line 9. The accesses to x in the asynchronization are performed in the same order

as in the original synchronous program.

The asynchronization on the right of Fig. 1 is not the only sound (data-race free) asynchronization

of the program on the left. For instance, the await at line 24 can be moved one statement up (before

the read of x) and the resulting program remains equivalent to the sequential one. Thus, we

consider the problem of enumerating all sound asynchronizations of a sequential program 𝑃 w.r.t.

substituting a set of methods with asynchronous versions. Enumerating all sound asynchronizations

makes it possible to deal separately with the problem of choosing the best asynchronization in

terms of performance based on some metric (e.g., performance tests). This problem reduces to

finding all possible placements of awaits that do not introduce data races.

In general, the number of (sound) asynchronizations is exponential in the number of method

calls in the program. Therefore, we focus on the delay complexity of this enumeration problem,

i.e., the complexity of the delay between outputting two consecutive (distinct) outputs. Note that a

trivial enumeration of all asynchronizations and checking equivalence to the original program for

each one of them has an exponential delay complexity. We also consider the problem of computing

optimal asynchronizations that maximize the distance between a call and a matching await. The

code in between these two statements can execute in parallel with the awaited task, and therefore,

optimal asynchronizations maximize the amount of parallelism. Note however that it is hard to

argue that such maximal parallelism translates always to maximal performance in practice.

We show that both the delay complexity of the enumeration problem, and the complexity

of computing an optimal asynchronization are polynomial time modulo an oracle for solving

reachability (assertion checking) in sequential programs (they both reduce to a quadratic number

1
Actually, the .Net platform does not contain such a method. We use it here to simplify the exposition. Reading the content

of a webpage should pass through WebRequest and HttpWebResponse objects. The explanations would remain valid.
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of reachability queries). The former relies on the latter via a rather surprising result, which differs

from other concurrency synthesis problems (e.g., insertion of locks), which is that the optimal

asynchronization is unique. This holds even if the optimality is relative to a given asynchronization

𝑃𝑎 which intuitively, imposes an upper bound on the distance between awaits and matching calls.

In general, one could expect that avoiding data races could reduce to a choice between moving

one await or another closer to the matching call. We show that this is not necessary because

essentially, the optimal asynchronization is required to be equivalent to a sequential program,

which is deterministic and executes statements in a fixed order. To show the robustness of these

results, we also investigate the related problem of synthesizing sound multi-threaded refactorings,

where every method call is executed by a different thread. We show that the techniques used to

compute asynchronizations can be extended to this case as well.

As a more pragmatic approach, we define a procedure for computing sound asynchronizations

which relies on a bottom-up interprocedural data-flow analysis. Intuitively, the placement of awaits

is computed by traversing the call graph bottom up, from “base” methods that do not call any other

method in the program, to methods that call only base methods, and so on. Each method 𝑚 is

considered only once, and the placement of awaits in𝑚 is derived based on a data-flow analysis

that computes read or write accesses made in the callees. We show that this procedure computes

optimal asynchronizations of abstracted programs where every Boolean condition in if-then-else

constructs or while loops is replaced with non-deterministic choice. These asynchronizations are

sound for the concrete programs as well. This procedure enables a polynomial delay enumeration

of the sound asynchronizations of abstracted programs.

We implemented the asynchronization enumeration based on data-flow analysis in a prototype

tool for C# programs. We evaluated this implementation on a number of non-trivial programs

extracted from open source repositories. This evaluation shows that sound asynchronizations can

be enumerated efficiently and in some cases, we found asynchronizations that increase the amount

of parallelism (the distance between calls and awaits). This demonstrates that our techniques have

the potential to become the basis of refactoring tools that allow programmers to improve their

usage of async/await primitives.

In summary, this paper makes the following contributions:

• Wedefine the problem of data race-free asynchronization synthesis for refactoring sequential

code to equivalent asynchronous code.

• We show that the optimization problem of computing a data race-free asynchronization

that maximizes the distance between calls and awaits admits a unique solution.

• We investigate the delay complexity of data race-free asynchronization synthesis.

• A pragmatic algorithm based on data-flow analysis for computing asynchronizations.

• A prototype implementation of this algorithm and an evaluation of this prototype on a

benchmark of non-trivial C# programs extracted from open-source repositories.

2 OVERVIEW
We give an overview of our techniques for synthesizing sound asynchronizations using as example

the synchronous program on the left of Fig. 2. We discuss asynchronizations obtained by replacing

the calls to IO with equivalent asynchronous counterparts IOAsync. The program on the center of

Fig. 2 is the “weakest” asynchronization where the awaits cannot be moved further away from their

matching calls because of the use of the return values. The methods MainAsync, F1, and F2 are

declared to be asynchronous since they (in)directly call IOAsync. This program is not a solution to

our synthesis problem since it is not equivalent to the sequential program. It admits new behaviors,

an example being pictured in Fig. 3 (edges represent execution order): the accesses to x and y in
MainAsync occur before the write to x in F1 and the write to y in F2, respectively. These statements
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1 void Main() {

2 F1();

3 F2();

5 int r1 = x;

7 int r2 = y;

8 x = r1 + r2;

11 }

12 void F1() {

13 int r3 = IO();

15 x = r3;

16 }

17 void F2() {

18 int r4 = IO();

20 y = r4;

21 }

1 async Task MainAsync() {

2 Task t1 = F1();

3 Task t2 = F2();

5 int r1 = x;

7 int r2 = y;

8 x = r1 + r2;

9 await t1;

10 await t2;

11 }

12 async Task F1() {

13 Task<int> t3 = IOAsync();

14 int r3 = await t3;

15 x = r3;

16 }

17 async Task F2() {

18 Task<int> t4 = IOAsync();

19 int r4 = await t4;

20 y = r4;

21 }

1 async Task MainAsync() {

2 Task t1 = F1();

3 Task t2 = F2();

4 await t1;

5 int r1 = x;

6 await t2;

7 int r2 = y;

8 x = r1 + r2;

11 }

12 async Task F1() {

13 Task<int> t3 = IOAsync();

14 int r3 = await t3;

15 x = r3;

16 }

17 async Task F2() {

18 Task<int> t4 = IOAsync();

19 int r4 = await t4;

20 y = r4;

21 }

Fig. 2. A synchronous C# program and two asynchronizations (x and y are static variables).

were executed in the opposite order in the sequential program. They form three data races because

they are not ordered by the control-flow of the asynchronization. There is another execution where

they execute as in the original program: if tasks t3 and t4 finish immediately, then the await has

no effect, and F1 and F2 finish before returning control to their caller MainAsync.

async Task F1() { 

  Task<int>  t3 = IOAsync(); 
  int r3 = await t3;

  x = r3
}

async Task MainAsync() {

  Task t1 = F1();
  
  
  
  
  Task t2 = F2(); 

  

  int r1 = x; 
  int r2 = y;
  x = r1 + r2;

  await t1; 

  
  await t2; 

}

async Task F2() { 

  Task<int>  t4 = IOAsync(); 
  int r4 = await t4;

  y = r4
}

Fig. 3. An execution with three data races on x
and y. The blocks of instructions executed in F1
and F2 are marked with red and blue outlines,
respectively. Each call is decomposed into two
blocks representing what is executed before they
are suspended (due to an await of IOAsync) and
when the continuation is scheduled.

We define a procedure for computing a data race-

free asynchronization, which is optimal in the sense

that it maximizes the distance between calls and

matching awaits. This is an iterative process that

repairs data races starting from the “weakest” asyn-

chronization on the center of Fig. 2. For instance,

the data race between the write to x in MainAsync
and the write to x in F1 in Fig. 3 can be repaired by

moving the await t1 one position up, before the the

write to x in MainAsync. This way, the write to x
in F1 will always execute first. The call to F1 that

matches this await and the write to x in MainAsync
are regarded as the root cause of this data race.

For efficiency, the data races are enumerated and

repaired in a certain order, that avoids superfluous

repair steps. This order prioritizes data races involv-

ing statements that would execute first in the orig-

inal sequential program. For instance, in Fig. 3, the

first data race to repair involves the read of x from
MainAsync and the write to x in F1, because these
statements are the first to execute in the original

sequential program among the other statements in-

volved in data races. Repairing this data race consists

in moving await t1 before the read of x from MainAsync, which implies that F1 completes before

the read of x. This repair is defined from a notion of root cause of a data race, that in this case,

contains the call to F1 and the read of x from MainAsync. Interestingly, this repair step removes

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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the write-write data race between the write to x in MainAsync and the write to x in F1 as well. If
we would have repaired these data races in the opposite order, we would have moved await t1
first before the write to x, and then, before the read of x. Similarly, the data race between the read

of y from MainAsync and the write to y in F2 is repaired by moving the await t2 before the the
read from y in MainAsync (the call to F2 and the read from y in MainAsync are the root cause of this
data race). The resulting program is shown on the right of Fig. 2 and it is equivalent to the original

sequential program. We show that the problem of computing root-causes of data races which are

minimal in this order can be reduced in polynomial time to reachability (assertion checking) in

sequential programs.

Asynchronizations can be partially ordered depending on the distance, i.e., the number of

statements from the original program, between a call and a matching await. The left of Fig. 4

pictures an excerpt of this partial order where an asynchronization is represented as a vector of

distances, the first element is the number of statements between the call and the await on t1 (we
count only statements that appear in the sequential program as well and exclude awaits), and so

on. The asynchronization on the right of Fig. 1 corresponds to (1, 1, 0, 0). The bottom of this order

represents an asynchronization where every call is immediately followed by await, and it has the

same semantics as the original program. The top element is the “weakest” asynchronization, which

was given in the middle of Fig. 1. The right of Fig. 4 gives the set of all sound asynchronizations.

The program on the right of Fig. 1 is the biggest element, i.e., moving any await further away from

the matching call introduces a data race.

(4, 3, 0, 0)
...
(1, 2, 0, 0)(2, 1, 0, 0)

(1, 1, 0, 0)

(1, 0, 0, 0)(0, 1, 0, 0)

(0, 0, 0, 0)

(1, 1, 0, 0)

(1, 0, 0, 0)(0, 1, 0, 0)

(0, 0, 0, 0)

Fig. 4. Partially-ordered sets of asynchroniza-
tions of the program on the left of Fig. 2. The
edges connect comparable elements, smaller ele-
ments being below bigger elements.

To enumerate all sound asynchronizations, we

perform a top-down traversal of the partial order on

the left of Fig. 4. We first compute the biggest ele-

ment that is data race free. Although this is a partial

order, we show that this element is actually unique.

Intuitively, uniqueness is proved by contradiction,

showing that the least upper bound of two maxi-

mal incomparable sound asynchronizations is also a

sound asynchronization. For instance, the least com-

mon ancestor of the two sound asynchronizations

with vectors of distances (1, 0, 0, 0) and (0, 1, 0, 0) is
the sound asynchronization (1, 1, 0, 0).

Then, for each immediate predecessor 𝑃𝑎 of the biggest sound asynchronization, we compute the

biggest sound asynchronization which is smaller than 𝑃𝑎 (the first step is a particular case where 𝑃𝑎
is the top element). As an extension of the previous case, this is also unique, and called an optimal

asynchronization relative to 𝑃𝑎 . Ensuring that traversals starting in different immediate predecessors

explore disjoint parts of the asynchonization space requires some additional constraints on the

exploration, which are explained in Section 5. The enumeration finishes when reaching the bottom,

which is data race free by definition, on all branches of the recursion.

As a pragmatic alternative, we propose a procedure based on static analysis for enumerating

sound asynchronizations, which follows essentially the same schema, except that the problem of

data race detection is delegated to a static analysis.

3 ASYNCHRONOUS PROGRAMS
Fig. 5 lists the syntax of a simple programming language used to formalize our approach. A program

is defined by set of methods, including a distinguished main, which are classified as synchronous or

asynchronous. Synchronous methods execute immediately as they are invoked and run continuously

until completion. Asynchronous methods, marked using the keyword async, can run only partially

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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⟨prog⟩ ::= program ⟨md ⟩

⟨md ⟩ ::= method ⟨m⟩ ⟨inst ⟩ | async method ⟨m⟩ ⟨inst ⟩ | ⟨md ⟩ ; ⟨md ⟩

⟨inst ⟩ ::= ⟨x ⟩ := ⟨le⟩ | ⟨r ⟩ := ⟨x ⟩ | ⟨r ⟩ := call ⟨m⟩ | return | await ⟨r ⟩ | await ∗ | if ⟨le⟩ {⟨inst ⟩} else {⟨inst ⟩}
| while ⟨le⟩ {⟨inst ⟩} | ⟨inst ⟩ ; ⟨inst ⟩

Fig. 5. Syntax. ⟨𝑚⟩, ⟨𝑥⟩, and ⟨𝑟 ⟩ represent method names, program and local variables, resp. ⟨𝑙𝑒⟩ is an
expression over local variables, or ∗ which is non-deterministic choice.

and be interrupted when executing an await. Only asynchronous methods are allowed to use

await, and all methods using await must be defined as asynchronous. We assume that methods

are not (mutually) recursive. A program is called synchronous if it is a set of synchronous methods.

A method consists of a method name from a setM and a method body, i.e., a list of statements.

These statements use a set PV of program variables, which can be accessed from different methods

(ranged over using 𝑥 , 𝑦, 𝑧,. . .), and a set LV of method local variables (ranged over using 𝑟 , 𝑟1,

𝑟2,. . .). We assume that input/return parameters are modeled using dedicated program variables.

We assume that each method call returns a unique task identifier from a set T, which is used to

record control dependencies imposed by awaits (for uniformity, synchronous methods return a

task identifier as well). Our language includes assignments to local/program variables, awaits,
return statements, while loops, and conditionals. We assume that variables take values from a

data domainD, which includes T to account for variables storing task identifiers. The assignment to

a local variable ⟨𝑟 ⟩ := ⟨𝑥⟩, where 𝑥 is a program variable, is called a read of ⟨𝑥⟩ and an assignment

to a program variable ⟨𝑥⟩ := ⟨𝑙𝑒⟩ is called a write to ⟨𝑥⟩. A base method is a method whose body

does not contain method calls.

Asynchronous methods. Asynchronous methods can use awaits to wait for the completion of a

task (invocation) while the control is passed to their caller. The parameter 𝑟 of the await specifies
the id of the awaited task. As a sound abstraction of awaiting the completion of an IO operation

(reading or writing a file, an http request, etc.), which we do not model explicitly, we use a variation

await ∗. This has a non-deterministic effect of either continuing to the next statement in the same

method (as if the IO operation already completed), or passing the control to the caller (as if the IO

operation is still pending).

async method GetStringAsync() {

await ∗;
retVal = WWW[url_Input];

return

}

async method ReadToEndAsync() {

await ∗;
ind = Stream.index;

len = Stream.content.Length;

if (ind >= len)

retVal = ""; return

Stream.index = len;

retVal = Stream.content(ind,len);

return }

Fig. 6. Modeling IO operations.

For example, Fig. 6 lists the modeling in our language of IO

methods ReadToEndAsync and GetStringAsync used in Fig. 1.

We use program variables to represent system resources such as

the network or the file system. The await for the completion of

accesses to such resources is modeled by await ∗. This enables
capturing racing accesses to system resources in asynchronous

executions. GetStringAsync contains a read of the resource WWW
(for world wide web) at some input url. Parameters or return

values are modeled using program variables. ReadToEndAsync
is modeled using reads/writes of the index/content of the input

stream, and await ∗ models the await for their completion.

We assume that the body of every asynchronous method𝑚

satisfies several well-formedness syntactic constraints, defined on its control-flow graph (CFG). We

recall that each node of the CFG represents a basic block of code (a maximal-length sequence of

branch-free code), and nodes are connected by directed edges which represent a possible transfer

of control between blocks. Thus,

(1) every call 𝑟 := call𝑚′ uses a distinct variable 𝑟 (to store task identifiers),

(2) every CFG block containing an await 𝑟 is dominated by the CFG block containing the call

𝑟 := call . . . (i.e., every CFG path from the entry to the await has to pass through the call),

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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(3) every CFG path starting from a block containing a call 𝑟 := call . . . to the exit has to pass

through an await 𝑟 statement.

The first condition simplifies the technical exposition, while the last two ensure that 𝑟 stores a

valid task identifier when executing an await 𝑟 , and that every asynchronous invocation is awaited

before the caller finishes. Languages like C# or Javascript do not enforce the latter constraint, but it

is considered bad practice due to possible exceptions that may arise in the invoked task and which

are not caught. In this work, we forbid passing task identifiers as method parameters or return

values (which is possible in C#). An await 𝑟 statement is said to match an 𝑟 := call𝑚′ statement.

async method Main {

while ∗
r = call m;

await r;

}

async method Main {

r = call m;

if ∗
await r;

}

async method Main {

r = call m;

while ∗
r' = call m;

await r';

await r;

}

Fig. 7. Examples of programs

For example, the program on the left of

Fig. 7 does not satisfy the second condition

above since await r can be reached with-

out entering the loop. The program in the

center of Fig. 7 does not satisfy the third

condition since we can reach the end of the

method without entering the if branch and

thus, without executing await r. The program on the right of Fig. 7 satisfies both conditions.

Semantics. A program configuration is a tuple (g, stack, pending, completed, c-by,w-for) where
g is composed of the valuation of the program variables, stack is the call stack, pending is the

set of asynchronous tasks, e.g., continuations predicated on the completion of some method call,

completed is the set of completed tasks, c-by represents the relation between a method call and its

caller, and w-for represents the control dependencies imposed by await statements. The activation

frames in the call stack and the asynchronous tasks are represented using triples (𝑖,𝑚, ℓ) where
𝑖 ∈ T is a task identifier,𝑚 ∈ M is a method name, and ℓ is a valuation of local variables, including

as usual a dedicated program counter. The set of completed tasks is represented as a function

completed : T→ {⊤,⊥} such that completed(𝑖) = ⊤ when 𝑖 is completed and completed(𝑖) =⊥,
otherwise. We define c-by and w-for as partial functions T⇀ T with the meaning that c-by(𝑖) = 𝑗 ,

resp., w-for(𝑖) = 𝑗 , iff 𝑖 is called by 𝑗 , resp., 𝑖 is waiting for 𝑗 . We set w-for(𝑖) = ∗ if the task 𝑖 was
interrupted because of an await ∗ statement.

The semantics of a program 𝑃 is defined as a labeled transition system (LTS) [𝑃] = (C,Act, ps
0
,→

) where C is the set of program configurations, Act is a set of transition labels called actions, ps
0
is

the initial configuration, and→⊆ C ×Act ×C is the transition relation. Each program statement is

interpreted as a transition in [𝑃]. The set of actions is defined by:

Act ={(𝑖, ev) : 𝑖 ∈ T, ev ∈ {rd(𝑥),wr(𝑥), call( 𝑗), await(𝑘), return, cont : 𝑗 ∈ T, 𝑘 ∈ T ∪ {∗}, 𝑥 ∈ PV}}

The transition relation→ is defined in Fig. 8. Transition labels are written on top of→.

Transitions labeled by (𝑖, rd(𝑥)) and (𝑖,wr(𝑥)) represent a read and a write accesses to the

program variable 𝑥 , respectively, executed by the task (method call) with identifier 𝑖 . A transition

labeled by (𝑖, call( 𝑗)) corresponds to the fact that task 𝑖 executes a method call that results in

creating a task 𝑗 . Task 𝑗 is added on the top of the stack of currently executing tasks, declared

pending (setting completed( 𝑗) to⊥), and c-by is updated to track its caller (c-by( 𝑗) = 𝑖). A transition

(𝑖, return) represents the return from task 𝑖 . Task 𝑖 is removed from the stack of currently executing

tasks, and completed(𝑖) is set to ⊤ to record the fact that task 𝑖 is finished.

A transition (𝑖, await( 𝑗)) corresponds to task 𝑖 waiting asynchronously for task 𝑗 . Its effect

depends on whether task 𝑗 is already completed. If this is the case (i.e., completed[ 𝑗] = ⊤), task
𝑖 continues and executes the next statement. Otherwise, task 𝑖 executing the await is removed

from the stack and added to the set of pending tasks, and w-for is updated to track the waiting-

for relationship (w-for(𝑖) = 𝑗 ). Similarly, a transition (𝑖, await(∗)) corresponds to task 𝑖 waiting

asynchronously for the completion of an unspecified task. Non-deterministically, task 𝑖 continues

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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𝑚 ∈ M r := x ∈ inst(ℓ (pc)) ℓ′ = ℓ [𝑟 ↦→ g(𝑥), pc ↦→ next(ℓ (pc)) ]

(g, (𝑖,𝑚, ℓ) ◦ stack, ∗, ∗, ∗, ∗)
(𝑖, rd(𝑥))
−−−−−−−−→ (g, (𝑖,𝑚, ℓ′) ◦ stack, ∗, ∗, ∗, ∗)

𝑚 ∈ M x := le ∈ inst(ℓ (pc)) ℓ′ = ℓ [pc ↦→ next(ℓ (pc)) ] g′ = g[𝑥 ↦→ ℓ (le) ]

(g, (𝑖,𝑚, ℓ) ◦ stack, ∗, ∗, ∗, ∗)
(𝑖,wr(𝑥))
−−−−−−−−→ (g′, (𝑖,𝑚, ℓ′) ◦ stack, ∗, ∗, ∗, ∗)

𝑟 := call𝑚 ∈ inst(ℓ (pc)) ℓ0 = init(g,𝑚) 𝑗 ∈ T fresh ℓ′ = ℓ [𝑟 ↦→ 𝑗, pc ↦→ next(ℓ (pc)) ]
completed′ = completed[ 𝑗 ↦→⊥] c-by′ = c-by[ 𝑗 ↦→ 𝑖 ]

(g, ( 𝑗,𝑚′, ℓ) ◦ stack, ∗, completed, c-by, ∗)
(𝑖, call( 𝑗))
−−−−−−−−−→ (g, (𝑖,𝑚, ℓ0) ◦ ( 𝑗,𝑚′, ℓ′) ◦ stack, ∗, completed′, c-by′, ∗)

𝑚 ∈ M ∧ return ∈ inst(ℓ (pc)) completed′ = completed[𝑖 ↦→ ⊤]

(g, (𝑖,𝑚, ℓ) ◦ stack, ∗, completed, ∗, ∗)
(𝑖, return)
−−−−−−−−→ (g, stack, ∗, completed′, ∗, ∗)

𝑚 ∈ M await r ∈ inst(ℓ (pc)) completed(ℓ (𝑟 )) = ⊤ ℓ′ = ℓ [pc ↦→ next(ℓ (pc)) ]

(g, (𝑖,𝑚, ℓ) ◦ stack, ∗, completed, ∗, ∗)
(𝑖, await(ℓ (𝑟 )))
−−−−−−−−−−−−−→ (g, (𝑖,𝑚, ℓ′) ◦ stack, ∗, completed, ∗, ∗)

𝑚 ∈ M await r ∈ inst(ℓ (pc)) completed(ℓ (𝑟 )) =⊥ w-for′ = w-for[𝑖 ↦→ ℓ (𝑟 ) ] ℓ′ = ℓ [pc ↦→ next(ℓ (pc)) ]

(g, (𝑖,𝑚, ℓ) ◦ stack, pending, completed, ∗,w-for)
(𝑖, await(ℓ (𝑟 )))
−−−−−−−−−−−−−→ (g, stack, {(𝑖,𝑚, ℓ′) } ⊎ pending, completed, ∗,w-for′)

𝑚 ∈ M await ∗ ∈ inst(ℓ (pc)) ℓ′ = ℓ [pc ↦→ next(ℓ (pc)) ]

(g, (𝑖,𝑚, ℓ) ◦ stack, ∗, ∗, ∗, ∗)
(𝑖, await(∗))
−−−−−−−−−−−→ (g, (𝑖,𝑚, ℓ′) ◦ stack, ∗, ∗, ∗, ∗)

𝑚 ∈ M await ∗ ∈ inst(ℓ (pc)) w-for′ = w-for[𝑖 ↦→ ∗] ℓ′ = ℓ [pc ↦→ next(ℓ (pc)) ]

(g, (𝑖,𝑚, ℓ) ◦ stack, pending, ∗, ∗,w-for)
(𝑖, await(∗))
−−−−−−−−−−−→ (g, stack, {(𝑖,𝑚, ℓ′) } ⊎ pending, ∗, ∗,w-for′)

𝑚 ∈ M w-for(𝑖) = 𝑗 completed( 𝑗) = ⊤

(g, 𝜖, {(𝑖,𝑚, ℓ) } ⊎ pending, completed, ∗,w-for)
(𝑖, cont)
−−−−−−−→ (g, (𝑖,𝑚, ℓ), pending, completed, ∗,w-for)

𝑚 ∈ M w-for(𝑖) = ∗

(g, stack, {(𝑖,𝑚, ℓ) } ⊎ pending, ∗, ∗,w-for)
(𝑖, cont)
−−−−−−−→ (g, (𝑖,𝑚, ℓ) ◦ stack, pending, ∗, ∗,w-for)

Fig. 8. Program semantics. For a function 𝑓 , we use 𝑓 [𝑎 ↦→ 𝑏] to denote a function 𝑔 such that 𝑔(𝑐) = 𝑓 (𝑐)
for all 𝑐 ≠ 𝑎 and 𝑔(𝑎) = 𝑏. The function inst returns the instruction at some given control location while next
gives the next instruction to execute. We use ◦ to denote sequence concatenation. We use init to represent
the initial state of a method call.

to the next statement, or task 𝑖 is interrupted and transferred to the set of pending tasks (w-for(𝑖)
is set to ∗).
A transition (𝑖, cont) represents the scheduling of the continuation of task 𝑖 . There are two

cases depending on whether 𝑖 waited for the completion of another task 𝑗 modeled explicitly in

the language (i.e., w-for(𝑖) = 𝑗 ), or an unspecified task (i.e., w-for(𝑖) = ∗). In the first case, the

transition is enabled only when the call stack is empty and the task 𝑗 is completed. In the second

case, the transition is enabled without any additional requirements. The latter models the fact that

methods implementing IO operations (waiting for unspecified tasks in our language) are executed

in background threads and can interleave with the main thread (that executes the Main method).

Although this may seem restricted because we do not allow arbitrary interleavings between such

methods, it is however complete when focusing on the existence of data races as in our approach.

An execution of 𝑃 is a sequence 𝜌 = ps
0

a1−→ ps
1

a2−→ . . . of transitions starting in the initial

configuration ps
0
and leading to a configuration ps where the call stack and the set of pending

tasks are empty. C[𝑃] denotes the set of all program variable valuations included in configurations

that are reached in executions of 𝑃 . Since we are only interested in reasoning about the sequence

of actions a1 · a2 · . . . labeling the transitions of an execution, we will call the latter an execution as

well. The set of executions of a program 𝑃 is denoted by Ex(𝑃).
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Table 1. Strict partial orders included in a trace.

a1 ≤𝜌 a2 a1 occurs before a2 in 𝜌

a1 ∼ a2 a1 = (𝑖, ev) and a2 = (𝑖, ev′)

(a1, a2) ∈ MO a1 ∼ a2 ∧ a1 ≤𝜌 a2

(a1, a2) ∈ CO (a1, a2) ∈ MO ∨ (a1 = (𝑖, call( 𝑗)) ∧ a2 = ( 𝑗, _)) ∨ (∃ a3 . (a1, a3) ∈ CO ∧ (a3, a2) ∈ CO)
(a1, a2) ∈ SO (a1, a2) ∈ CO ∨ (∃ a3 . (a1, a3) ∈ SO ∧ (a3, a2) ∈ SO)

∨ (a1 = ( 𝑗, _) ∧ a2 = (𝑖, _) ∧ ∃ a3 = (𝑖, call( 𝑗)) . a3 ≤𝜌 a2)
(a1, a2) ∈ HB (a1, a2) ∈ CO ∨ (∃ a3 . (a1, a3) ∈ HB ∧ (a3, a2) ∈ HB)

∨ (a1 = ( 𝑗, _) ∧ a2 = (𝑖, _) ∧ ∃ a3 = (𝑖, await( 𝑗)) . a3 ≠ a2 ∧ a3 ≤𝜌 a2)
∨ (a1 = ( 𝑗, await(𝑖′)) is the first await in 𝑗 ∧ a2 = (𝑖, _) ∧ ∃ a3 = (𝑖, call( 𝑗)) . a3 ≤𝜌 a2)

Traces. The trace of an execution 𝜌 ∈ Ex(𝑃) is a tuple tr(𝜌) = (𝜌,MO,CO, SO,HB) of strict partial
orders between the actions in 𝜌 defined in Table 1. The method invocation order MO records the

order between actions in the same invocation, and the call order CO is an extension ofMO that

additionally orders actions before an invocation with respect to those inside that invocation. The

synchronous happens-before order SO orders the actions in an execution as if all the invocations

were synchronous (even if the execution may contain asynchronous ones). It is an extension of CO
where additionally, every action inside a callee is ordered before the actions following its invocation

in the caller. The (asynchronous) happens-before order HB contains typical control-flow constraints:

it is an extension of CO where every action 𝑎 inside an asynchronous invocation is ordered before

the corresponding await in the caller, and before the actions following its invocation in the caller

if 𝑎 precedes an await inMO (an invocation can be interrupted only when executing an await).
Tr(𝑃) is the set of traces of a program 𝑃 .

        async method Main {
               r1 = call m;
  
               await r1;

               r2 = x;
     
               x = 2 * r2; 
           }

async method m {
  await *;
 
  retVal = x;   
  
  x = input; 
}

Fig. 9. A trace of an asynchronous pro-
gram. Arrows between statements denote
relations between the corresponding ac-
tions in the trace.

Fig. 9 shows a trace where two statements are linked

by a dotted arrow if the corresponding actions are related

by MO, a dashed arrow if the corresponding actions are

related by the CO but not byMO, and a solid arrow if the

corresponding actions are related by the HB but not by CO.

4 SYNTHESIZING ASYNCHRONOUS PROGRAMS
We define the synthesis problem we investigate in this

work. Given a synchronous program 𝑃 and a subset of base

methods 𝐿 ⊆ 𝑃 , the goal is to synthesize all asynchronous

programs 𝑃𝑎 that are equivalent to 𝑃 and that are obtained

by substituting every method in 𝐿 with an equivalent asynchronous version. The base methods

are intended to be models of standard library calls (e.g., IO operations) in a practical context, and

asynchronous versions are defined by inserting await ∗ statements (in the original synchronous

code). We use 𝑃 [𝐿] to emphasize a subset of base methods 𝐿 of a program 𝑃 . Also, we will call 𝐿 a

library. A library is called (a)synchronous when all methods are (a)synchronous.

4.1 Asynchronizations of a Synchronous Program

method Main {

r1 = call m;

r2 = x;

}

method m() {

retVal = x;

x = input;

return;

}

async method Main {

r1 = call m;

await r1;

r2 = x;

}

async method m {

await ∗
retVal = x;

x = input;

return;

}

async method Main {

r1 = call m;

r2 = x;

await r1;

}

async method m {

await ∗
retVal = x;

x = input;

return;

}

Fig. 10. A program and its asynchronizations.

Let 𝑃 [𝐿] be a synchronous program, and

𝐿𝑎 a set of asynchronous methods obtained

from those in 𝐿 by inserting at least one

await ∗ statement in their body (and adding

the keyword async). We assume that each

method in 𝐿𝑎 corresponds to a method in 𝐿

with the same name, and vice-versa. A pro-

gram 𝑃𝑎 [𝐿𝑎] is called an asynchronization of

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.



491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Automated Synthesis of Asynchronizations 1:11

𝑃 [𝐿] with respect to 𝐿𝑎 if it is a syntactically

correct program obtained by replacing the

methods in 𝐿 with those in 𝐿𝑎 and adding

await statements as necessary. More precisely, let 𝐿∗ ⊆ 𝑃 be the set of all methods of 𝑃 that

transitively call methods of 𝐿. Formally, 𝐿∗ is the smallest set of methods that includes 𝐿 and that

satisfies the following: if a method 𝑚 calls a method 𝑚 ∈ 𝐿∗, then 𝑚 ∈ 𝐿∗. Then, 𝑃𝑎 [𝐿𝑎] is an
asynchronization of 𝑃 [𝐿] with respect to 𝐿𝑎 if it is obtained from 𝑃 as follows:

• All methods in 𝐿∗ \ 𝐿 are declared as asynchronous (we assume that every call to an

asynchronous method is followed by an await statement, and any method that uses await
must be declared as asynchronous).

• For each invocation 𝑟 := call𝑚 of a method𝑚 ∈ 𝐿∗, add await statements await 𝑟 satisfying
the well-formedness syntactic constraints described in Section 3.

For instance, Fig. 10 lists a synchronous program and its two asynchronizations, where 𝐿 = 𝐿∗ = {𝑚}.
Asynchronizations differ only in the await placement.

Async[𝑃, 𝐿, 𝐿𝑎] is the set of all asynchronizations of 𝑃 [𝐿] w.r.t. 𝐿𝑎 . The strong asynchronization,

denoted by strongAsync[𝑃, 𝐿, 𝐿𝑎], is an asynchronization where every added await immediately

follows the matching method call. The strong asynchronization reaches exactly the same set of

program variable valuations as the original program.

4.2 Problem Definition
We investigate the problem of enumerating all asynchronizations of a given program w.r.t. a given

asynchronous library, which are sound, in the sense that they do not admit data races. Two actions

a1 and a2 in a trace 𝜏 = (𝜌,MO,CO, SO,HB) are concurrent if (a1, a2) ∉ HB and (a2, a1) ∉ HB.

Definition 4.1 (Data Race). An ansynchronous program 𝑃𝑎 admits a data race (a1, a2), where
(a1, a2) ∈ SO, if a1 and a2 are two concurrent actions of a trace 𝜏 ∈ Tr(𝑃𝑎), and a1 and a2 are read

or write accesses to the same program variable 𝑥 , and at least one of them is a write.

For example, the program on the right of Fig. 10 admits a data race between the actions that

correspond to x = input and r2 = x, respectively, in a trace where the call to𝑚 is suspended

when it reaches await ∗ and the control is transferred to Main which executes r2 = x. Traces of
synchronous programs can not contain concurrent actions, and therefore they do not admit data

races. Note that also strongAsync[𝑃, 𝐿, 𝐿𝑎] does not admit data races.

An asynchronization 𝑃𝑎 [𝐿𝑎] is called sound when 𝑃𝑎 [𝐿𝑎] does not admit data races. Absence of

data races implies equivalence to the original program, in the sense of reaching the same set of

configurations (program variable valuations).

Lemma 4.2. 𝑃 [𝐿] ≡ 𝑃𝑎 [𝐿𝑎] implies C[𝑃 [𝐿]] = C[𝑃𝑎 [𝐿𝑎]], for every 𝑃𝑎 [𝐿𝑎] ∈ Async[𝑃, 𝐿, 𝐿𝑎]
Proof. We have to show that for any asynchronization 𝑃𝑎 of a program 𝑃 , if 𝑃𝑎 does not admit

data races then C[𝑃𝑎] = C[𝑃]. Let 𝜌 be an execution of 𝑃𝑎 that reaches a configuration ps ∈ C[𝑃𝑎].
We show that actions in 𝜌 can be reordered such that any action that occurs in 𝜌 between (𝑖, call( 𝑗))
and ( 𝑗, return) is not of the form (𝑖, _) (i.e., the task 𝑗 is executed synchronously). If an action (𝑖, _)
occurs in 𝜌 between (𝑖, call( 𝑗)) and ( 𝑗, return), then it must be concurrent with ( 𝑗, return). Since
𝑃𝑎 does not admit data races, an execution 𝜌 ′ resulting from 𝜌 by reordering any two concurrent

actions reaches the same configuration ps as 𝜌 . Therefore, there exists an execution 𝜌 ′′ where the
actions that occur between any (𝑖, call( 𝑗)) and ( 𝑗, return) are not of the form (𝑖, _). This is also an

execution of 𝑃 (modulo removing the awaits which have no effect), which implies ps ∈ C[𝑃]. □

Definition 4.3. Given a synchronous program 𝑃 [𝐿], and an asynchronous library 𝐿𝑎 , the asy-

chronization synthesis problem asks to enumerate all sound asynchronizations in Async[𝑃, 𝐿, 𝐿𝑎].
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There are other approaches for checking behavioral equivalence, e.g., reachable states equivalence,

and input-output equivalence, however, they are either undecidable or decidable but highly complex.

Our approach offers a stronger notion of equivalence that is simpler to check.

5 ENUMERATING SOUND ASYNCHRONIZATIONS
We describe an algorithm for solving the asynchronization synthesis problem. This algorithm relies

on a partial order between asynchronizations that guides the enumeration of possible solutions.

It computes optimal solutions (according to this order) repeatedly under different bounds, until

exploring the whole space.

5.1 Optimal Asynchronization
We define a partial order on the space of asynchronizations which takes into account the distance

between call statements and corresponding await statements.

An await statement s𝑤 in a method𝑚 of an asynchronization 𝑃𝑎 [𝐿𝑎] ∈ Async[𝑃, 𝐿, 𝐿𝑎] covers a
read/write statement s in 𝑃 if there exists a path in the CFG of𝑚 from the call statement matching

s𝑤 to s𝑤 that contains s. The set of statements covered by an await s𝑤 is denoted by Cover(s𝑤).
We compare asynchronizations in terms of sets of statements covered by awaits that match the

same call from the original synchronous program 𝑃 [𝐿]. Since asynchronizations are obtained by

adding awaits, every call statement in an asynchronization 𝑃𝑎 [𝐿𝑎] ∈ Async[𝑃, 𝐿, 𝐿𝑎] corresponds
to a fixed call in 𝑃 [𝐿].
Definition 5.1. For two asynchronizations 𝑃𝑎, 𝑃

′
𝑎 ∈ Async[𝑃, 𝐿, 𝐿𝑎], 𝑃𝑎 is less asynchronous than

𝑃 ′𝑎 , denoted by 𝑃𝑎 ≤ 𝑃 ′𝑎 , iff for every await statement s𝑤 in 𝑃𝑎 , there exists an await statement s𝑤

in 𝑃 ′𝑎 that matches the same call as s𝑤 , such that Cover(s𝑤) ⊆ Cover(s′𝑤).
For example, the two asynchronous programs in Fig. 10 are ordered by ≤ sinceCover(await 𝑟1) =
{} in the first and Cover(await 𝑟1) = {r2 = x} in the second.

Note that the strong asynchronization is less asynchronous than any other asynchronization.

Also, note that ≤ has a unique maximal element that is called the weakest asynchronization and

denoted by weakAsync[𝑃, 𝐿, 𝐿𝑎]. For instance, the program on the right of Fig. 10 is the weakest

asynchronization of the synchronous program on the left of the figure.

Relative Optimality. A crucial property of this partial order is that for every asynchronization 𝑃𝑎 ,

there exists a unique maximal asynchronization that is smaller than 𝑃𝑎 (w.r.t. ≤) and that is sound.

Formally, given 𝑃𝑎 ∈ Async[𝑃, 𝐿, 𝐿𝑎], an asynchronization 𝑃 ′𝑎 is called an optimal asynchronization of

𝑃 relative to 𝑃𝑎 if (1) 𝑃
′
𝑎 ≤ 𝑃𝑎 , 𝑃

′
𝑎 is sound, and (2) 𝑃

′
𝑎 is maximal among other sound asynchronizations

smaller than 𝑃𝑎 , i.e., ∀ 𝑃 ′′𝑎 ∈ Async[𝑃, 𝐿, 𝐿𝑎] . 𝑃 ′′𝑎 is sound and 𝑃 ′′𝑎 ≤ 𝑃1 ⇒ 𝑃 ′′𝑎 ≤ 𝑃 ′𝑎 .
The following lemma shows that for a given 𝑃𝑎 there exists a unique 𝑃 ′𝑎 that is an optimal

asynchronization of 𝑃 relative to 𝑃𝑎 . The existence is implied by the fact that strongAsync[𝑃, 𝐿, 𝐿𝑎]
is the bottom element of ≤. To prove uniqueness, we assume by contradiction that there exist

two incomparable optimal asynchronizations 𝑃1

𝑎 and 𝑃2

𝑎 and select the first await statement s
1

𝑤 ,

according to the control-flow of the sequential program, that is placed in different positions in the

two programs. Assume that s
1

𝑤 is closer to its matching call in 𝑃1

𝑎 . Then, we move s
1

𝑤 in 𝑃1

𝑎 further

away from its matching call to the same position as in 𝑃2

𝑎 . This modification does not introduce

data races since 𝑃2

𝑎 is data race free. Thus, the resulting program is data race free, bigger than 𝑃1

𝑎 ,

and smaller than 𝑃𝑎 w.r.t. ≤ contradicting the fact that 𝑃1

𝑎 is an optimal asynchronization.

Lemma 5.2. Given an asynchronization 𝑃𝑎 ∈ Async[𝑃, 𝐿, 𝐿𝑎], there exists a unique program 𝑃 ′𝑎 that
is an optimal asynchronization of 𝑃 relative to 𝑃𝑎 .

Proof. Since strongAsync[𝑃, 𝐿, 𝐿𝑎] is the bottom element of ≤, then there always exists a sound

asynchronization smaller than 𝑃𝑎 . Assume by contradiction that there exist two distinct programs
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Algorithm 1 An algorithm for enumerating all sound asynchronizations (these asynchronizations

are obtained as a result of the output instruction). OptRelative returns the optimal asynchroniza-

tion of 𝑃 relative to 𝑃𝑎

1: procedure AsyncSynthesis(𝑃𝑎 , s𝑤 )

2: 𝑃 ′𝑎 ← OptRelative(𝑃𝑎) ;
3: output 𝑃 ′𝑎 ;
4: P ← ImmPred(𝑃 ′𝑎, s𝑤 ) ;
5: for each (𝑃 ′′𝑎 , s′′𝑤 ) ∈ P
6: AsyncSynthesis(𝑃 ′′𝑎 , s′′𝑤 ) ;

𝑃1

𝑎 and 𝑃2

𝑎 that are both optimal asynchronizations of 𝑃 relative to 𝑃𝑎 . Let 𝜌
1
(resp., 𝜌2) be an

execution of 𝑃1

𝑎 (resp., 𝑃2

𝑎) where every await ∗ does not suspend the execution of the current task,

i.e., 𝜌1 and 𝜌2 simulate the synchronous execution of 𝑃 . Let s1𝑤 be the statement corresponding to

the first await action in 𝜌1 such that (1) there exists an await action in 𝜌2 with the corresponding

await statement s
2

𝑤 , such that s
1

𝑤 and s
2

𝑤 match the same call in 𝑃 , and Cover(s1𝑤) ⊂ Cover(s2𝑤)
(this holds because 𝑃1

𝑎 and 𝑃2

𝑎 are distinct asynchronizations of the same synchronous program,

thus Cover(s1𝑤) and Cover(s2𝑤) must be comparable), and (2) for every other await statement s
3

𝑤 in

𝑃1

𝑎 that generates an await action which occurs before the await action of s
1

𝑤 in 𝜌1, there exists an

await statement s
4

𝑤 in 𝑃2

𝑎 matching the same call in 𝑃 , such that Cover(s3𝑤) = Cover(s4𝑤).
Let 𝑃3

𝑎 be the program obtained from 𝑃1

𝑎 by moving the await s
1

𝑤 down (further away from the

matching call) such that Cover(s1𝑤) = Cover(s2𝑤). Moving an await down can only create data races

between actions that occur after the execution of the matching call. Then, 𝑃3

𝑎 contains a data race

iff there exists an execution 𝜌 of 𝑃3

𝑎 and two concurrent actions a1 and a2 that occur between the

action (𝑖, await( 𝑗)) generated by s
1

𝑤 and the action (𝑖, call( 𝑗)) of the call matching s
1

𝑤 , such that:

((𝑖, call( 𝑗)), a1) ∈ CO, (a1, a𝑤) ∉ HB, ((𝑖, call( 𝑗)), a2) ∈ CO and (a2, (𝑖, await( 𝑗))) ∈ HB
where the action a𝑤 corresponds to the first await action in the task 𝑗 . Let s𝑤 be the statement

corresponding to the action a𝑤 . Since the only difference between 𝑃3

𝑎 and 𝑃2

𝑎 is the placement of

awaits then ((𝑖, call( 𝑗)), a1) ∈ CO and ((𝑖, call( 𝑗)), a2) ∈ CO hold in any execution 𝜌 ′ of 𝑃2

𝑎 that

contains the actions a1 and a2. Also, note that since a𝑤 occurs in the task 𝑗 that the action of s
1

𝑤 is

waiting for. This implies that in 𝜌1 the action of s𝑤 occurs before the action of s
1

𝑤 in 𝜌1. Therefore,

by the definition of s
1

𝑤 we have that s𝑤 in 𝑃1

𝑎 covers the same set of statements as the corresponding

s
′
𝑤 in 𝑃2

𝑎 that matches the same call as s𝑤 . Consequently, (a1, a′𝑤) ∉ HB and (a2, (𝑖, await( 𝑗))) ∈ HB
hold in any execution 𝜌 ′ of 𝑃2

𝑎 that contains the actions a1 and a2 (a
′
𝑤 is the action of s

′
𝑤). Thus,

there exists an execution 𝜌 ′ of 𝑃2

𝑎 such that the actions a1 and a2 are concurrent. This implies that if

𝑃3

𝑎 admits a data race, then 𝑃2

𝑎 admits a data race between actions generated by the same statements.

As 𝑃2

𝑎 is data race free, we get that 𝑃3

𝑎 is data race free as well. Since 𝑃1

𝑎 < 𝑃3

𝑎 , we get that 𝑃
1

𝑎 is not

optimal, which contradicts the hypothesis. □

5.2 Enumeration Algorithm
Our algorithm for enumerating all sound asynchronizations is given in Algorithm 1 as a recursive

procedure AsyncSynthesis that we describe in two phases.

First, we ignore the second argument of AsyncSynthesis (written in blue), which represents an

await instruction. For an asynchronization 𝑃𝑎 , AsyncSynthesis outputs all sound asynchronizations
that are smaller than 𝑃𝑎 w.r.t. ≤. It uses OptRelative to compute the optimal asynchronization

𝑃 ′𝑎 of 𝑃 relative to 𝑃𝑎 , and then, calls itself recursively for all immediate predecessors of 𝑃 ′𝑎 w.r.t.
≤. AsyncSynthesis outputs all sound asynchronizations of 𝑃 when given as input the weakest

asynchronization of 𝑃 . The delay complexity of this algorithm remains exponential in general,

because it may output a sound asynchronization multiple times. Indeed, because asynchronizations
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are only partially ordered by ≤, different chains of recursive calls starting in different immediate

predecessors may end up outputting the same asynchronization. For instance, looking at the

asynchronizations of our motivating example on the right of Fig. 4, the asynchronization (0, 0, 0, 0)
will be outputted twice because it is an immediate predecessor of both (0, 1, 0, 0) and (1, 0, 0, 0).

To avoid outputting the same solution twice, we use a refinement of the above that restricts the

set of immediate predecessors available for a (recursive) call of AsyncSynthesis. This is based on

a strict total order ≺𝑤 between awaits in a program 𝑃𝑎 that follows a topological ordering of its

inter-procedural CFG, i.e., if s𝑤 occurs before s
′
𝑤 in the body of a method𝑚, then s𝑤 ≺𝑤 s

′
𝑤 , and if

s𝑤 occurs in a method𝑚 and s
′
𝑤 occurs in a method𝑚′ s.t.𝑚 (indirectly) calls𝑚′, then s𝑤 ≺𝑤 s

′
𝑤 .

Therefore, AsyncSynthesis takes an await statement s𝑤 as a second parameter, which is initially

the maximal element w.r.t. ≺𝑤 , and it calls itself only on immediate predecessors of an optimal

solution obtained by moving up an await s
′′
𝑤 smaller than or equal to s𝑤 w.r.t. ≺𝑤 . The recursive

call on that predecessor will receive as input s
′′
𝑤 . Formally, this relies on a function ImmPred that

returns pairs of immediate predecessors and await statements defined as follows:

ImmPred(𝑃 ′𝑎, s𝑤) = {(𝑃 ′′𝑎 , s′′𝑤) : 𝑃 ′′𝑎 < 𝑃 ′𝑎 and ∀ 𝑃 ′′′𝑎 ∈ Async[𝑃, 𝐿, 𝐿𝑎] . 𝑃 ′′′𝑎 < 𝑃 ′𝑎 =⇒ 𝑃 ′′′𝑎 ≤ 𝑃 ′′𝑎

and s
′′
𝑤 ⪯𝑤 s𝑤 and 𝑃 ′′𝑎 ∈ 𝑃 ′𝑎 ↑ s′′𝑤 }

(𝑃 ′𝑎 ↑ s′′𝑤 is the set of asynchronizations obtained from 𝑃 ′𝑎 by changing only the position of s
′′
𝑤 ,

moving it up w.r.t. the position in 𝑃 ′𝑎). For instance, looking at immediate predecessors of (1, 1, 0, 0)
on the right of Fig. 4, (0, 1, 0, 0) is obtained by moving the first await in ≺𝑤 and therefore, after

computing the optimal solution relative to it, which is itself, it will explore no more immediate

predecessors (ImmPred returns ∅ because the input s𝑤 is theminimal element of ≺𝑤 , and it is already
immediately after the matching call). Its immediate predecessor will be explored when recursing

on (1, 0, 0, 0). The complexity analysis also relies on a property of the optimal asynchronization

relative to an immediate predecessor: if the predecessor is defined by moving an await s
′′
𝑤 , then the

optimal asynchronization is obtained by moving only awaits smaller than s
′′
𝑤 w.r.t. ≺𝑤 .

Lemma 5.3. If 𝑃 ′′𝑎 is an immediate predecessor of a sound asynchronization 𝑃 ′𝑎 , which is defined by

moving an await s
′′
𝑤 in 𝑃 ′𝑎 up, then the optimal sound asynchronization relative to 𝑃 ′′𝑎 is obtained by

moving only awaits smaller than s
′′
𝑤 w.r.t. ≺𝑤 .

Proof. Moving an await up in 𝑃 ′𝑎 can only create data races between actions that occur after

the execution of this await (because the invocation is suspended earlier). The only possible repairs

of these data races consists in either moving s
′′
𝑤 down which results in 𝑃 ′𝑎 or moving up some other

awaits that occur in methods that (indirectly) call the method in which s
′′
𝑤 occurs. The first case is

not applicable because it gives a program that is not smaller than 𝑃 ′′𝑎 . In the second case, every

await s
′
𝑤 that is moved up occurs in a method that (indirectly) calls the method in which s

′′
𝑤 occurs,

and therefore, s
′
𝑤 is smaller than s

′′
𝑤 w.r.t. ≺𝑤 . □

We show that Algorithm 1 returns all sound asynchronizations when called with the weakest

asynchronization and the maximum await in ≺𝑤 . Lemma 5.3 shows that after having computed

an optimal sound asynchronization 𝑃 ′𝑎 in a recursive call with parameter s𝑤 any smaller sound

asynchronization is also smaller than some predecessor in ImmPred(𝑃 ′𝑎, s𝑤). Thus, the restriction
to a subset of predecessors is without loss of completeness (see also the supplementary material).

Theorem 5.4. AsyncSynthesis(weakAsync[𝑃, 𝐿, 𝐿𝑎], s𝑤 ), where s𝑤 is maximal inweakAsync[𝑃, 𝐿, 𝐿𝑎]
w.r.t. ≺𝑤 , outputs all sound asynchronizations of 𝑃 [𝐿] w.r.t. 𝐿𝑎 .

Viewing asychronization synthesis as an enumeration problem, the following theorem states its

delay complexity in terms of an oracle Oopt that returns an optimal asynchronization relative to a

given one. This follows from the fact that Algorithm 1 cannot return the same asynchonization
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twice and computing immediate predecessors is polynomial time. The former is a consequence of

Lemma 5.3. Thus, let 𝑃1

𝑎 and 𝑃
2

𝑎 be two predecessors in ImmPred(𝑃 ′𝑎, s𝑤) obtained by moving up the

awaits s
1

𝑤 and s
2

𝑤 , respectively, and assume that s
1

𝑤≺𝑤s2𝑤 . By Lemma 5.3, all solutions computed in

the recursive call on 𝑃1

𝑎 will have s
2

𝑤 placed as in 𝑃 ′𝑎 while all the solutions computed in the recursive

call on 𝑃2

𝑎 will have s
2

𝑤 closer to the matching call. Therefore, the sets of solutions computed in

these two branches of the recursion are distinct and the same solution cannot be outputted twice.

Theorem 5.5. The delay complexity of the asychronization synthesis problem is polynomial time

modulo Oopt .

6 COMPUTING OPTIMAL ASYNCHRONIZATIONS
We describe an approach for computing the optimal asynchronization relative to a given synchro-

nization 𝑃𝑎 , which can be seen as a way of repairing 𝑃𝑎 so that it becomes data-race free. Intuitively,

we repeatedly eliminate data races in 𝑃𝑎 by moving certain await statements closer to the matching

calls. The data races in 𝑃𝑎 (if any) are enumerated in a certain order that prioritizes data races

between actions that occur first in executions of the original synchronous program.

6.1 Data Race Ordering
method Main {

while ∗
if ∗
r1 = x;

r2 = y; }

Fig. 11

We define an order between data races of asynchronizations based on the order

between actions in executions of the synchronous program 𝑃 . This order relates

data races in possibly different executions or asynchronizations (of the same

program), which is possible because each action in a data race corresponds to a

statement in 𝑃 (a read or a write to a program variable).

For two read/write statements s and s
′
, s ≺ s

′
denotes the fact that there is an

execution of 𝑃 in which the first time s is executed occurs before the first time s
′
is executed. For

two actions a and a
′
in an execution/trace of an asynchronization, generated

2
by two read/write

statements s and s
′
, resp., we use a ≺SO a

′
to denote the fact that s ≺ s

′
and either s

′ ⊀ s or s
′
is

reachable from s in the interprocedural
3
control-flow graph of 𝑃 without taking any back edge

4
.

async method Main {

r1 = call m;

if ∗
r2 = x;

x = r2 + 1;

else

r3 = x;

await r1;

}

async method m {

await ∗
retVal = x;

x = input;

return;

}

Fig. 12

For a deterministic synchronous program (admitting a single execution),

a ≺SO a
′
iff s ≺ s

′
. For non-deterministic programs, when s and s

′
are contained

in a loop body, it is possible that s ≺ s
′
and s

′ ≺ s. For instance, the statements

r1 = x and r2 = y of the program in Fig. 11 can be executed in different

orders depending on the number of loop iterations and whether the if branch

is entered during the first loop iteration. In this case, we use the control-flow

order to break the tie between a and a
′
.

The order between data races corresponds to the colexicographic order

induced by ≺SO. This is a partial order since actionsmay originate from different

control-flow paths and are incomparable w.r.t. ≺SO.
Definition 6.1 (Data Race Order). Given two races (a1, a2) and (a3, a4) admit-

ted by (possibly different) asynchronizations of a synchronous program 𝑃 , we

have that (a1, a2) ≺SO (a3, a4) iff a2 ≺SO a4, or a2 = a4 and a1 ≺SO a3.

Example 6.2. For the program in Fig. 12, we have the following order between data races:

(x = input, r2 = x) ≺SO (retVal = x, x = r2 + 1) because r2 = x is executed before the write

2
Each action labels a transition in the operational semantics (Section 3), and each transition corresponds to executing a

statement. This statement is said to generate the action.

3
The interprocedural graph is the union of the control-flow graphs of each method along with edges from call sites to entry

nodes, and from exit nodes to return sites.

4
A back edge points to a block that has already been met during a depth-first traversal of the control-flow graph, and

corresponds to loops.
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x = r2 + 1 in the original synchronous program (for simplicity we use statements instead of

actions). However, the data races (x = input, r2 = x) and (x = input, r3 = x) are incomparable.

6.2 Repairing Data Races
Repairing a data race (a1, a2) reduces to modifying the position of a certain await. In general,

we can either move an await down (further away from the matching call), for instance in the

method executing a1, or move an await up (closer to the matching call), for instance in the method

executing a2. For example, the data race between x = input and r2 = x on the right of Fig. 10 can

be repaired by either moving await ∗ in𝑚 after the write x = input, so the call to𝑚 is suspended

later, or await r1 in Main before r2 = x, to restrict the set of statements that can execute before𝑚

finishes. In the following, we consider only repairs where awaits are moved up. The “completeness”

of this set of repairs follows from the particular order in which we enumerate data races. Intuitively,

moving the other await down would introduce a data race we have already repaired.

In general, a1 may not occur in a method𝑚′ that is called directly by𝑚, as in Fig. 10, but in

another method called by𝑚′ or even further down the call tree. Similarly, a2 may not be part of𝑚,

but it may be included in another method called by𝑚 after calling𝑚′ (but before await 𝑟 ), and so

on. Next, we describe precisely the transformation that suffices to repair a given data race.

Any two racing actions have a common ancestor in the call orderCOwhich is a call action. This is

at least the call action of main. The least common ancestor of a1 and a2 in CO among call actions is

denoted by LCACO (a1, a2). Formally, LCACO (a1, a2) is a call action a𝑐 = (𝑖, call( 𝑗)) s.t. (a𝑐 , a1) ∈ CO,

(a𝑐 , a2) ∈ CO, and for each other call action a
′
𝑐 , if (a𝑐 , a′𝑐 ) ∈ CO then (a′𝑐 , a1) ∉ CO. For instance, the

call action corresponding to r1 = call m on the right of Fig. 10 is the least common ancestor of the

racing actions discussed above. The following lemma (see the supplementary material for a proof)

shows that this is the asynchronous call for which the matching await must be moved in order to

repair a given data race. It also identifies the position where the await matching LCACO (a1, a2)
should be moved in order to repair the data race. Intuitively, this is just before a2 if a2 is in the same

method as LCACO (a1, a2), or more generally, just before the last statement in the same method

which precedes a2 in the call order. On the right of Fig. 10, await r1 has to be moved before the

statement r2 = x, which plays the role of a2.

Lemma 6.3. Let (a1, a2) be a data race in a trace 𝜏 of an asynchronization 𝑃𝑎 , and a𝑐 = (𝑖, call( 𝑗)) =
LCACO (a1, a2). Then, 𝜏 contains a unique action a𝑤 = (𝑖, await( 𝑗)) and a unique action a such that:

• (a, a𝑤) ∈ MO, and a is the latest action in the method order MO such that (a𝑐 , a) ∈ MO and

(a, a2) ∈ CO∗ (CO∗ denotes the reflexive closure of CO).
async method Main {

r1 = call m;

if ∗
r2 = x;

else

r3 = y;

await r1;

}

async method m {

await ∗
retVal = x;

x = input;

return;

}

async method Main {

r1 = call m;

if ∗
await r1;

r2 = x;

else

r3 = y;

await r1;

}

async method m {

await ∗
retVal = x;

x = input;

return;

}

Fig. 13. Examples of asynchronizations.

Lemma 6.3 identifies a sufficient transformation for

repairing a data race (a1, a2): moving the await s𝑤 gener-

ating the action a𝑤 just before the statement s generating

a. This is sufficient because it ensures that every state-

ment that follows LCACO (a1, a2)5 in call order will be

executed before a and before any statement which suc-

ceeds a in call order, including a2. Note that moving the

await a𝑤 anywhere after awill not affect the concurrency

between a1 and a2.

The pair (s𝑐 , s), where s𝑐 is the call statement generat-

ing LCACO (a1, a2), is called the root cause of the data race
(𝑎1, 𝑎2). LetRepDRace(𝑃𝑎, s𝑐 , s) be themaximal asynchro-

nization 𝑃 ′𝑎 smaller than 𝑃𝑎 w.r.t. ≤, s.t. no await statement

5
We abuse the terminology and make no distinction between statements and actions.
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Algorithm 2 The procedureOptRelative for computing the optimal asynchronization of 𝑃 relative

to 𝑃𝑎 . RootCauseMinDRace(𝑃 ′𝑎) returns the root cause of a minimal data race of 𝑃 ′𝑎 w.r.t. ≺SO, or
⊥ if 𝑃 ′𝑎 is data race free.

1: procedure OptRelative(𝑃𝑎 )
2: 𝑃 ′𝑎 ← 𝑃𝑎

3: root ← RootCauseMinDRace(𝑃 ′𝑎)
4: while root ≠ ⊥
5: 𝑃 ′𝑎 ← RepDRace(𝑃 ′𝑎, root)
6: root ← RootCauseMinDRace(𝑃 ′𝑎)
7: return 𝑃 ′𝑎

matching s𝑐 occurs after s on a CFG path. When the control-flow graph of the method contains

branches, the construction of RepDRace(𝑃𝑎, s𝑐 , s) consists of (1) replacing all await statements

matching s𝑐 that are reachable in the CFG from s with a single await statement placed just before s,

and (2) adding additional await statements in branches that “conflict” with the branch containing

s. This is to ensure the syntactic constraints described in §3. These additional await statements are

at maximal distance from the corresponding call statement because of the maximality requirement.

For instance, to repair the data race between r2 = x and x = input in the program on the left of

Fig. 13, the statement await r1 must be moved before r2 = x in the if branch, which implies that

another await must be added on the else branch. The result is given on the right of Fig. 13.

The following shows that repairing a minimal data race cannot introduce smaller data races (w.r.t.

≺SO), which ensures some form of monotonicity when repairing minimal data races iteratively.

Lemma 6.4. Let 𝑃𝑎 be an asynchronization, (a1, a2) a data race in 𝑃𝑎 that is minimal w.r.t. ≺SO, and
(s𝑐 , s) the root cause of (a1, a2). Then, RepDRace(𝑃𝑎, s𝑐 , s) does not admit a data race that is smaller

than (a1, a2) w.r.t. ≺SO.
        async method m’ {
               
               r’ = call m;        
     
                                        
                                       s’’

               await r’;

           }

        async method m {
               
             sc: r = call _ ;                  s1
     

              s: ...                     s2

                                           
                                          s’

              sw: await r;

           }

CO

CO*CO*

CO*

Fig. 14. An excerpt of an asynchronous program.

Proof. The onlymodification in the program 𝑃 ′𝑎 =

RepDRace(𝑃𝑎, s𝑐 , s) compared to 𝑃𝑎 is themovement

of the await s𝑤 matching the call s𝑐 to be before

the statement s in a method 𝑚. The concurrency

added in 𝑃 ′𝑎 that was not possible in 𝑃𝑎 is between

actions (a′, a′′) generated by statements s
′
and s

′′
,

respectively, as shown in Fig. 14. W.l.o.g., we assume

that (a′, a′′) ∈ SO. The statements s1 and s2 are those

generating a1 and a2, respectively. The statement

s
′
is related by CO∗ to some statement in 𝑚 that

follows s, and s
′′
is related by CO∗ to some statement that follows the call to𝑚 in the caller of𝑚.

Note that s
′
is ordered by ≺ after s2. Since (a1, a2) ∈ SO and (a′, a′′) ∈ SO then s2 ≺ s

′′
and s1 ≺ s

′
.

Thus, any new data race (a′, a′′) in 𝑃 ′𝑎 that was not reachable in 𝑃𝑎 is bigger than (a1, a2). □

6.3 A Procedure for Computing Optimal Asynchronizations
Given an asynchronization 𝑃𝑎 , the procedure OptRelative in Algorithm 2 computes the optimal

asynchronization relative to 𝑃𝑎 by repairing data races iteratively until the program becomes data

race free. The following theorem states that correctness of this procedure.

Theorem 6.5. Given an asynchronization 𝑃𝑎 ∈ Async[𝑃, 𝐿, 𝐿𝑎], OptRelative(𝑃𝑎) returns the
optimal asynchronization of 𝑃 relative to 𝑃𝑎 .

Proof. We need to show that any immediate successor 𝑃1

𝑎 of the output 𝑃 ′𝑎 = OptRelative(𝑃𝑎)
that is also smaller than 𝑃𝑎 (w.r.t. ≤) admits data races. By the definition of ≤, 𝑃1

𝑎 is obtained by

moving exactly one await statement s𝑤 in a method𝑚 of 𝑃 ′𝑎 further away from the matching call s𝑐 .
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Since 𝑃1

𝑎 ≤ 𝑃𝑎 , the position of s𝑤 in the output 𝑃 ′𝑎 is due to repairing a data race between two actions

a1 and a2 with a root-cause (s𝑐 , s), for some s, on some program 𝑃 ′𝑎 ≤ 𝑃 ′′𝑎 ≤ 𝑃𝑎 . We show that these

actions form a data race in 𝑃1

𝑎 . These actions are reachable in an execution of 𝑃1

𝑎 because every

method𝑚′ that is called by𝑚 between s𝑐 and s𝑤 (s𝑐 included), or that follows𝑚
′
in the call-graph

of 𝑃1

𝑎 (or 𝑃 ′′𝑎 ) has exactly the same code as in 𝑃 ′′𝑎 , i.e., the placement of the awaits in those methods

is the same as in 𝑃 ′′𝑎 (call graphs remain identical between different asynchronizations). This is due

to the fact that any data race that would lead to moving an await in one of those methods is before

(a1, a2) in the order ≺SO. Since s𝑤 in 𝑃1

𝑎 is placed after s, we get that a1 and a2 are also concurrent

in that execution of 𝑃1

𝑎 , which concludes the proof. □

OptRelative(𝑃𝑎) iterates the process of repairing a data race a number of times which is linear

in the size of the input. Indeed, each iteration of the loop results in moving an await closer to the

matching call and before at least one more statement from the original synchronous program 𝑃 .

The fact that data races are enumerated in the order defined by ≺SO guarantees a bound on the

number of times an await matching the same call is moved during the execution of OptRelative(𝑃𝑎).

In general, this bound is the number of statements covered by all the awaits matching the call in

the input program 𝑃𝑎 . Actually, this is a rather coarse bound. A more refined analysis has to take

into account the number of branches in the CFGs. For programs without conditionals or loops,

every await is moved at most once during the execution of OptRelative(𝑃𝑎). In the presence of

branches, a call to an asynchronous method may match multiple await statements (one for each

CFG path starting from the call), and the data races that these await statements may create may

be incomparable w.r.t. ≺SO. Therefore, for a call statement s𝑐 , let |s𝑐 | be the sum of |Cover(s𝑤) | for
every await s𝑤 matching s𝑐 in 𝑃𝑎 .

Lemma 6.6. For any asynchronization 𝑃𝑎 ∈ Async[𝑃, 𝐿, 𝐿𝑎] and call statement s𝑐 in 𝑃𝑎 , the while

loop in OptRelative(𝑃𝑎) does at most |s𝑐 | iterations that result in moving an await matching s𝑐 .

Proof. We consider first the case without conditionals or loops, and we show by contradiction

that every await statement s𝑤 is moved at most once during the execution of OptRelative(𝑃𝑎),

i.e., there exists at most one iteration of the while loop which changes the position of s𝑤 . Suppose

that the contrary holds for an await s𝑤 . Let (a1, a2), and (a3, a4) be the data races repaired by the

first and second moves of s𝑤 , respectively. By Lemma 6.3, there exist two actions a and a
′
such that

(a𝑐 , a) ∈ MO, (a, a2) ∈ CO∗, (a, a𝑤) ∈ MO and (a𝑐 , a′) ∈ MO, (a′, a4) ∈ CO∗, (a′, a𝑤) ∈ MO

where a𝑤 = (𝑖, await( 𝑗)) and a𝑐 = (𝑖, call( 𝑗)) are the asynchronous call action and the matching

await action. Let s2 and s4 be the statements generating the two actions a2 and a4, respectively.

Then, we have either s2 ≺ s4 or s2 = s4, and both cases imply that (a, a′) ∈ MO∗. Thus, moving

the await statement generating a𝑤 before the statement generating a implies that it is also placed

before the statement generating a
′
(that occurs after a in the same method). Thus, the first move of

the await s𝑤 repaired both data races, which is contradiction.

In the presence of conditionals or loops, moving an await up in one branch may correspond

to adding multiple awaits in the other conflicting branches. Also, one call in the program may

correspond to multiple awaits on different branches. However, every repair of a data race consists

in moving one await closer to the matching call s𝑐 and before one more statement covered by some

await matching s𝑐 in the input 𝑃𝑎 . □

6.4 Computing Root Causes of Minimal Data Races
We present a reduction from the problem of computing root causes of minimal data races to

reachability (assertion checking) in sequential programs. This reduction builds on a program

instrumentation for checking if there exists a minimal data race that involves two given statements

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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1 Add before s1:

2 if ( lastTaskDelayed == ⊥ && * )

3 lastTaskDelayed := myTaskId();

4 DescendantDidAwait := thisHasDoneAwait;

5 return

7 Add before s2:

8 if ( task_s𝑐 == myTaskId() )

9 s := s2;

10 assert (lastTaskDelayed == ⊥ || !DescendantDidAwait);

13 Replace every statement ``await r'' with:

14 if( r == lastTaskDelayed ) then

15 if ( !DescendantDidAwait )

16 DescendantDidAwait := thisHasDoneAwait;

17 lastTaskDelayed := myTaskId();

18 return

19 else

20 thisHasDoneAwait := true

22 Add before every statement ``r := call m'':

23 if ( task_s𝑐 == myTaskId() ) then

24 s := this statement;

26 Add after every statement ``r := call m'':

27 if ( r == lastTaskDelayed )

28 s𝑐 := this statement;

29 task_s𝑐 := myTaskId();

Fig. 15. A program instrumentation for computing the root cause of a minimal data race between the
statements s1 and s2 (if any). All variables except for thisHasDoneAwait are program (global) variables.
thisHasDoneAwait is a local variable. The value ⊥ represents an initial value of a variable. The variables s𝑐
and s store the (program counters of the) statements representing the root cause. The method myTaskId
returns the id of the current task.

(s1, s2), whose correctness relies on the assumption that another pair of statements cannot produce

a smaller data race. This instrumentation is used in an iterative process where pairs of statements

are enumerated according to the colexicographic order induced by ≺. This specific enumeration

ensures that the assumption made for the correctness of the instrumentation is satisfied.

Given an asynchronization 𝑃𝑎 , the instrumentation described in Fig. 15 represents a synchronous

program where all await statements are replaced with synchronous code (lines 14–20). This

instrumentation simulates asynchronous executions of 𝑃𝑎 where methods may be only partially

executed, modeling await interruptions. It reaches an error state (see the assert at line 10) when

an action generated by s1 is concurrent with an action generated by s2, which represents a data

race, provided that s1 and s2 access a common program variable (these statements are assumed to

be given as input). Also, the values of s𝑐 and s when reaching the assertion violation represent the

root-cause of this data race.

The instrumentation simulates an execution of 𝑃𝑎 to search for a data race as follows (we discuss

the identification of the root-cause afterwards):

• It executes under the synchronous semantics until an instance of s1 is non-deterministically

chosen as a candidate for the first action in the data race (s1 can execute multiple times if it

is included in a loop for instance). The current invocation is interrupted when it is about to

execute this instance of s1 and its task id 𝑡0 is stored into lastTaskDelayed (see lines 2–5).

• Every invocation that transitively called 𝑡0 is interrupted when an await for an invocation

in this call chain (whose task id is stored into lastTaskDelayed) would have been executed

in the asynchronization 𝑃𝑎 (see line 18).

• Every other method invocation is executed until completion as in the synchronous semantics.

• When reaching s2, if s1 has already been executed (lastTaskDelayed is not ⊥) and at least

one invocation has only partially been executed, which is recorded in the boolean flag

DescendantDidAwait and which means that s1 is concurrent with s2, then the instrumen-

tation stops with an assertion violation.

A subtle point is that the instrumentation may execute code that follows an await 𝑟 even if the

task 𝑟 has been executed only partially, which would not happen in an execution of the original 𝑃𝑎 .

Here, we rely on the assumption that there exist no data race between that code and the rest of

the task 𝑟 . Such data races would necessarily involve two statements which are before s2 w.r.t. ≺.
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Therefore, the instrumentation is correct only if it is applied by enumerating pairs of statements

(s1, s2) w.r.t. the colexicographic order induced by ≺.
Next, we describe the computation of the root-cause, i.e., the updates on the variables s𝑐 and

s. By definition, the statement s𝑐 in the root-cause should be a call that makes an invocation that

is in the call stack when s1 is reached. This can be checked using the variable lastTaskDelayed
that stores the id of the last such invocation popped from the call stack (see the test at line 27). The

statement s in the root-cause can be any call statement that has been executed in the same task as

s𝑐 (see the test at line 23), or s2 itself (see line 9).

Let [[𝑃𝑎, s1, s2]] denote the instrumentation in Fig. 15. We say that the values of s𝑐 and s when

reaching the assertion violation are the root cause computed by this instrumentation. The following

theorem states its correctness.

Theorem 6.7. If [[𝑃𝑎, s1, s2]] reaches an assertion violation, then it computes the root cause of a

minimal data race, or there exists (s3, s4) such that [[𝑃𝑎, s3, s4]] reaches an assertion violation and

(s3, s4) is before (s1, s2) in colexicographic order w.r.t. ≺.
Based on Theorem 6.7, we define an implementation of the procedure RootCauseMinDRace(𝑃𝑎)

used in computing optimal asynchronizations (Algorithm 2) as follows:

• For all pairs of read or write statements (s1, s2) in colexicographic order w.r.t. ≺.
– If [[𝑃𝑎, s1, s2]] reaches an assertion violation, then

∗ return the root cause computed by [[𝑃𝑎, s1, s2]]
• return ⊥

The order ≺ between read or write statements can be computed using a quadratic number of

reachability queries in the synchronous program 𝑃 . Therefore, s ≺ s
′
iff an instrumentation of 𝑃

that sets a flag when executing s and asserts that this flag is not set when executing s
′
reaches an

assertion violation. The following theorem states the correctness of the procedure above.

Theorem 6.8. RootCauseMinDRace(𝑃𝑎) returns the root cause of a minimal data race of 𝑃𝑎 w.r.t.

≺SO, or ⊥ if 𝑃 ′𝑎 is data race free.

This procedure performs a quadratic number of reachability queries in sequential programs.

Theorem 6.9. The complexity of RootCauseMinDRace is polynomial time modulo an oracle for

the reachability problem in sequential programs.

6.5 Asymptotic Complexity of Asynchronization Synthesis
We state the complexity of the asynchronization synthesis problem. Theorem 5.5 shows that its delay

complexity is polynomial modulo the complexity of OptRelative in Algorithm 2, which by the

results in this section, reduces to a polynomial number of reachability queries in sequential programs.

The reachability problem is PSPACE-complete for finite-state sequential programs [Godefroid and

Yannakakis 2013].

Theorem 6.10. The output complexity
6
and delay complexity of the asynchronization synthesis

problem is polynomial time modulo an oracle for reachability in sequential programs, and PSPACE for

finite-state programs.

This result is optimal, i.e., checking whether there exists a sound asynchronization which is

different from the trivial strong synchronization is PSPACE-hard (follows from a reduction from

the reachability problem).

Theorem 6.11. Checking whether there exists a sound asynchronization different from the strong

asynchronization is PSPACE-complete.

6
Note that all asynchronizations can be enumerated with polynomial space.
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Proof. For hardness, checking if a sequential program 𝑃 reaches a particular control location

ℓ can be reduced to the non-existence of a non-trivial sound asynchronization of a program 𝑃 ′

defined as follows: (1) define a new method𝑚 that writes to a new program variable 𝑥 , and insert a

call to𝑚 followed by a write to 𝑥 at location ℓ , and (2) insert a write to 𝑥 after every call statement

that calls a method in {𝑚′}∗, where𝑚′ is the method containing ℓ . Let𝑚𝑎 be an asynchronous

version of𝑚 obtained by inserting an await ∗ at the beginning. Then, ℓ is reachable in 𝑃 iff the

only sound asynchronization of 𝑃 ′ w.r.t. {𝑚𝑎} is the strong asynchronization. □

7 OPTIMAL ASYNCHRONIZATIONS USING DATA-FLOW ANALYSIS
We present a procedure for computing sound asynchronizations, based on a bottom-up inter-

procedural data-flow analysis. It computes optimal asynchronizations for abstractions of programs

where every Boolean condition in if-then-else statements or while loops is replaced with the

non-deterministic choice ∗.
For a program 𝑃 , we define an abstraction 𝑃#

where every conditional if ⟨𝑙𝑒⟩ {𝑆1} else {𝑆2} is
rewritten to if ∗ {𝑆1} else {𝑆2}, and every while ⟨𝑙𝑒⟩ {𝑆} is rewritten to if ∗ {𝑆}. Besides adding
the non-deterministic choice ∗, loops are unrolled exactly once. Every asynchronization 𝑃𝑎 of 𝑃

corresponds to an abstraction 𝑃#

𝑎 obtained by applying exactly the same rewriting.

𝑃#
is a sound abstraction of 𝑃 in terms of sound asynchronizations it admits. Unrolling loops

once is sound because every asynchronous call in a loop iteration should be waited for in the same

iteration (see the syntactic constraints in §3).

Theorem 7.1. If 𝑃#

𝑎 is a sound asynchronization of 𝑃#
w.r.t. 𝐿𝑎 , then 𝑃𝑎 is a sound asynchronization

of 𝑃 w.r.t. 𝐿𝑎 .

We present a procedure for computing optimal asynchronizations of 𝑃#
, relative to a given

asynchronization 𝑃#

𝑎 . This procedure traverses methods of 𝑃#

𝑎 in a bottom-up fashion, detects data

races using summaries of read/write accesses computed using a straightforward data-flow analysis,

and repairs data races using the schema presented in Section 6.2. Applying this procedure to a real

programming language requires an alias analysis to detect statements that may access the same

memory location (this is trivial in our language whose purpose is to simplify the exposition).

We consider an enumeration of methods called bottom-up order, which is the reverse of a

topological ordering of the call graph
7
. For each method𝑚, let R(𝑚) be the set of program variables

that𝑚 can read, which is defined as the union of R(𝑚′) for every method𝑚′ called by𝑚 and the set

of program variables read in statements in the body of𝑚. The set of variablesW(𝑚) that𝑚 canwrite

is defined in a similar manner. We define RW-var(𝑚) = (R(𝑚),W(𝑚)). We extend the notation

RW-var to statements as follows: RW-var(⟨𝑟 ⟩ := ⟨𝑥⟩) = ({𝑥}, ∅), RW-var(⟨𝑥⟩ := ⟨𝑙𝑒⟩) = (∅, {𝑥}),
RW-var(𝑟 := call𝑚) = RW-var(𝑚), and RW-var(s) = (∅, ∅), for any other type of statement 𝑠 .

Also, let CRW-var(𝑚) be the set of read or write accesses that𝑚 can do and that can be concurrent

with accesses that a caller of𝑚 can do after calling𝑚. These correspond to read/write statements

that follow an await in𝑚, or to accesses in CRW-var(𝑚′) for a method𝑚′ called by𝑚. These sets

of accesses can be computed using the following data-flow analysis: for all methods𝑚 ∈ 𝑃#

𝑎 in

bottom-up order, and for each statement s in the body of𝑚 from begin to end,

• If s is a call to𝑚′ and s is not reachable from an await in the CFG of𝑚

• CRW-var(𝑚) ← CRW-var(𝑚) ∪ CRW-var(𝑚′)
• If s is reachable from an await statement in the CFG of𝑚

• CRW-var(𝑚) ← CRW-var(𝑚) ∪ RW-var(s)

7
The nodes of the call graph are methods and there is an edge from a method𝑚1 to a method𝑚2 if𝑚1 contains a call

statement that calls𝑚2.
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We use (R1,W1) ⊲⊳ (R2,W2) to denote the fact thatW1 ∩ (R2 ∪W2) ≠ ∅ orW2 ∩ (R1 ∪W1) ≠ ∅
(i.e., a conflict between read/write accesses). We define the procedure OptRelative

#
that given an

asynchronization 𝑃#

𝑎 works as follows:

• For all methods𝑚 ∈ 𝑃#

𝑎 in bottom-up order, and for each statement s in the body of𝑚 from

begin to end,

– If s occurs between 𝑟 := call 𝑚′ and await 𝑟 (for some 𝑚′), and RW-var(s) ⊲⊳

CRW-var(𝑚′), then 𝑃#

𝑎 ← RepDRace(𝑃#

𝑎, 𝑟 := call𝑚′, 𝑠)
• Return 𝑃#

𝑎

The following theorem states the correctness of OptRelative
#
. This procedure repairs data races

in an order which is ≺SO with some exceptions that do not affect optimality, i.e., the number of

times an await matching the same call can be moved. For instance, if a method𝑚 calls two other

methods𝑚1 and𝑚2 in this order, the procedure above may handle𝑚2 before𝑚1, i.e., repair data

races between actions that originate from𝑚2 before data races that originate from𝑚1, although

the former are bigger than the latter in ≺SO. This does not affect optimality because those repairs

are “independent”, i.e., any repair in𝑚2 cannot influence a repair in𝑚1, and vice-versa. The crucial

point is that this procedure repairs data races between actions that originate from a method𝑚

before data races that involve actions in methods preceding𝑚 in the call graph, which are bigger

in ≺SO than the former.

Theorem 7.2. OptRelative
# (𝑃#

𝑎) returns an optimal asynchronization relative to 𝑃#

𝑎 .

Since OptRelative
#
is based on a single bottom-up traversal of the call graph of the input

asynchronization 𝑃#

𝑎 , Theorem 5.5 implies the following result.

Theorem 7.3. The delay complexity of the asynchronization synthesis problem restricted to ab-

stracted programs 𝑃#
is polynomial time.

8 MULTI-THREADED REFACTORINGS
We discuss an extension of our framework to multi-threaded refactorings that rewrite a sequential

program into a multi-threaded program where every method invocation is executed on a different

thread. A caller can wait for a callee to complete using a join primitive. A start primitive for

spawning a new thread is the counterpart of an asynchronous call while join is the counterpart of

await. For instance, Fig. 16 lists a sequential program, a possible asynchonization, and amulti-thread

refactoring (both refactorings place the awaits/joins as far away as possible from the calls).

An important difference between start/join and async/await is the happens-before order relation.

For instance, the asynchronization on the center of Fig. 16 assigns 1 to x (line 11) before it assigns

2 to x (line 4), as in the original sequential program. However, the multi-thread program on the

right of Fig. 16 may execute these two assignments in any order, and admits a behavior that is not

possible in the sequential program (assigning 2 before assigning 1). Repairing this data-race consists

in moving the join at line 5 to occur before assigning 2 to x at line 4. In general, the happens-before

order is weaker compared to an analogous asynchronization, where awaits are placed as the joins,

which implies that any multi-threaded refactoring can be rewritten to an asynchronization. The

vice-versa may not be possible as shown in this example.

Despite this difference, it can still be proved that there exists a unique multi-threaded refactoring

that is sound, i.e., does not admit data races, and optimal, i.e., maximizes the distance between

start and join, a result similar to Lemma 5.2. Assuming by contradiction the existence of two

incomparable optimal and sound refactorings, one can show that moving a join in one refactoring

further away from the matching call as in the other refactoring does not introduce data races

(contradicting optimality). To compute optimal and sound multi-threaded refactorings, one can
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1 void Main() {

2 F();

4 x = 2;

6 }

8 void F() {

9 IO();

11 x = 1;

13 }

1 async Task MainAsync() {

2 Task t1 = F();

4 x = 2;

5 await t1;

6 }

8 async Task F() {

9 Task t2 = IOAsync();

11 x = 1;

12 await t2;

13 }

1 void Main() {

2 Thread thr1 = new Thread(F);

3 thr1.Start();

4 x = 2;

5 thr1.Join();

6 }

8 void F() {

9 Thread thr2 = new Thread(IO);

10 thr2.Start();

11 x = 1;

12 thr2.Join();

13 }

Fig. 16. A synchronous C# program, an asynchronization, and a multi-threaded refactoring.

apply the same iterative process of repairing data-races (the happens-before reflects multi-threading

instead of async/await), prioritizing data races involving statements that would execute first in the

sequential program. The repairing of a data-race is similar and consists in moving a join up.

In contrast to async/await, moving a join up does not introduce new data races (since no

new parallelism is introduced). This implies that all the predecessors of a sound multi-threaded

refactoring are also sound, i.e., the set of sound multi-threaded refactorings is downward closed.

9 EXPERIMENTAL EVALUATION
We present an empirical evaluation of our asynchronization enumeration approach, where optimal

asynchronizations are computed using the data-flow analysis described in Section 7. We consider a

benchmark consisting mostly of asynchronous C# programs extracted from open-source GitHub

projects. We evaluate the effectiveness of our technique in reproducing the original program as an

asynchronization of a program where asynchronous calls are reverted to synchronous calls, along

with other sound asynchronizations.

Implementation.We developped a prototype tool that relies on the Roslyn .NET compiler plat-

form [Roslyn 2021] to construct CFGs for methods in a given C# program. This prototype sup-

ports C# programs written in SSA form that include basic conditional or looping constructs and

async/await as concurrency primitives. It assumes that any alias information is provided apriori;

these constraints can be removed in the future with more engineering effort. Object fields are

interpreted as program variables in the terminology of the program syntax in Section 3 (data races

concern accesses to object fields).

The tool takes as input a possibly asynchronous program, and a mapping between synchronous

and asynchronous variations of base methods in this program. It reverts every asynchronous call

to a synchronous call, and it enumerates sound asynchronizations of the obtained program (using

Algorithm 1).

Benchmark. Our evaluation uses a benchmark outlined in Table 2. This contains 5 synthetic

examples (variations of the program in Fig. 1), 9 programs extracted from open-source C# GitHub

projects (their name is a prefix of the repository name), and 2 programs inspired by questions on

stackoverflow.com about async/await in C# (their name ends in Stackoverflow). Overall, there

are 13 base methods involved in computing asynchronizations of these programs (that have both

synchronous and asynchronous versions), which come from 5 C# libraries (System.IO, System.Net,

Windows.Storage, Microsoft.WindowsAzure.Storage, and Microsoft.Azure.Devices). They are modeled

as described in Section 3.

Evaluation. The last five columns of Table 2 list data concerning the application of our tool. The

column async lists the number of outputted sound asynchronizations. In general, the number of
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Table 2. Empirical results. Syntactic characteristics of input programs: lines of code (loc), number of meth-
ods (m), number of method calls (c), number of asynchronous calls (ac), number of awaits that could be
placed at least one statement away from the matching call (await#). Data concerning the enumeration of
asynchronizations: number of awaits that were placed at least one statement away from the matching call
(await), number of races discovered and repaired (races), number of statements that the awaits in the optimal
asynchronization are coveringmore than in the input program (cover), number of computed asynchronizations
(async), and running time (t).

Program loc m c ac await# await races cover async t(s)

SyntheticBenchmark-1 77 3 6 5 4 4 5 0 9 5

SyntheticBenchmark-2 115 4 12 10 6 3 3 0 8 5

SyntheticBenchmark-3 168 6 16 13 9 7 4 0 128 9

SyntheticBenchmark-4 171 6 17 14 10 8 5 0 256 55

SyntheticBenchmark-5 170 6 17 14 10 8 9 0 272 138

Azure-Remote 520 10 14 5 0 0 0 0 1 5

Azure-Webjobs 190 6 14 6 1 1 0 1 3 4

FritzDectCore 141 7 11 8 1 1 0 1 2 5

MultiPlatform 53 2 6 4 2 2 0 2 4 5

NetRpc 887 13 18 11 4 1 3 0 3 5

TestAZureBoards 43 3 3 3 0 0 0 0 1 4

VBForums-Viewer 275 7 10 7 3 2 1 1 6 5

Voat 178 3 6 5 2 1 1 1 4 10

WordpressRESTClient 133 3 10 8 4 2 1 0 4 5

ReadFile-Stackoverflow 47 2 3 3 1 0 1 0 1 6

UI-Stackoverflow 50 3 4 4 3 3 3 0 12 5

asynchronizations depends on the number of invocations (column ac in Table_1) and the size of the

code blocks between an invocation and the instruction using its return value (column await# gives

the number of non-empty blocks). The number of sound asynchronizations depends roughly, on

how many of these code blocks are racing with the method body. These asynchronizations contain

awaits that are at a non-zero distance from the matching call (non-zero values in column await)

and for many Github programs, this distance is bigger than in the original program (non-zero

values in column cover)
8
. This shows that we are able to increase the distances between awaits

and their matching calls for those programs. On average the distance between awaits and their

matching calls in optimal asynchronizations for non synthetic benchmarks is 1.27 statements.

With few exceptions, each program admits multiple sound asynchronizations (values in col-

umn async bigger than one), which makes the focus on the delay complexity relevant. Also, this

leaves the possibility of making a choice based on other criteria, e.g., performance metrics. While

asynchronizations are computed statically, their performance can be derived only dynamically

(executing them). In general, we are not aware of any syntactic criteria that can guide towards

computing a best solution w.r.t. performance in practice. These results show that our techniques

have the potential of becoming the basis of a refactoring tool allowing programmers to improve

their usage of the async/await primitives. The artifacts are available in an anonymous GitHub

repository [Experiments 2021].

10 RELATEDWORK
There are many works on synthesizing or repairing concurrent programs in the standard multi-

threading model, e.g., automatic parallelization in compilers [Bacon et al. 1994; Blume et al. 1996;

Han and Tseng 2001], or synchronization synthesis [Bloem et al. 2014; Cerný et al. 2015, 2013, 2014;

Clarke and Emerson 2008; Gupta et al. 2015; Manna and Wolper 1984; Vechev et al. 2009, 2010].

Our paper focuses on the use of the async/await primitives which poses specific challenges that

are not covered in these works. For instance, synthesizing lock placements does not admit unique

optimal solutions w.r.t. a syntactic order as for async/await.

8
The synthetic examples are weakest asynchronizations to start with.
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Program Refactoring. A number of program refactoring tools have been proposed for convert-

ing C# programs using explicit callbacks into async/await programs [Okur et al. 2014], Android

programs using AsyncTask into programs that use IntentService [Lin et al. 2015], or sequential

applications into parallel applications using concurrent libraries for Java [Dig et al. 2009]. The

C# related tool [Okur et al. 2014], which is the closest to our work, makes it possible to repair

misusage of async/await that might result in deadlocks. Their repairing mechanism is based on

forcing the continuations after the first await to run on background threads. This tool cannot

modify procedure calls to be asynchronous as in our work. Compared to all these works, we give

an algorithmic framework with precise specifications and complexity analysis.

Data Race Detection. There are many works that study dynamic data race detection using

happens-before and lock-set analysis, or timing-based detection, e.g., [Flanagan and Freund 2009;

Kini et al. 2017; Li et al. 2019; Raman et al. 2010; Smaragdakis et al. 2012]. [Raman et al. 2010]

proposes a dynamic data race detector for async-finish task-parallel programs by adapting the

algorithm proposed in [Feng and Leiserson 1997] that computes abstract summaries of parallel

tasks. [Li et al. 2019] presents a testing technique for finding data races in C# and F# programs,

based on inserting timing delays in unsafe methods (e.g., methods that access memory without

locking), and a monitor for finding data races. These methods could be used to approximate our

reduction from data race checking to reachability in sequential programs.

A number of works [Blackshear et al. 2018; Engler and Ashcraft 2003; Liu and Huang 2018]

propose static analyses for finding data races. [Blackshear et al. 2018] designs a compositional data

race detector for multi-threaded Java programs, based on an inter-procedural analysis assuming

that any two public methods can execute in parallel. Similar to [Santhiar and Kanade 2017], they

precompute method summaries in order to extract potential racy accesses. These approaches are

similar to the analysis we present in Section 7, but they concern a different programming model.

Analyzing Asynchronous Programs. There exist several works that propose program analyses

for various classes of asynchronous programs. [Bouajjani and Emmi 2012; Ganty and Majumdar

2012] give complexity results for the reachability problem, and [Santhiar and Kanade 2017] proposes

a static analysis for deadlock detection in C# programs that use both asynchronous and synchronous

wait primitives. This work relies on the static analysis introduced in [Madhavan et al. 2012] for

computing method summaries in terms of points-to relations. [Bouajjani et al. 2017] investigates

the problem of checking whether Java UI asynchronous programs have the same set of behaviors

as sequential programs where roughly, asynchronous tasks are executed synchronously.

11 CONCLUSION
We have proposed a framework for refactoring sequential programs to equivalent asynchronous

programs that rely on the async/await primitives. We have determined precise complexity bounds

for the problem of computing a sound asynchronization that maximizes the distance between

asyncs and awaits, which in theory, increases the level of parallelism, and the problem of com-

puting all sound asynchronizations. The latter problem is useful in a context where performance

measures cannot be derived statically, which is usually the case, and makes it possible to compute

a sound asynchronization that maximizes performance by separating concerns (enumerate sound

asynchronizations and evaluate performance separately). We have also investigated the related

problem of synthesizing sound multi-threaded refactorings where every method call is executed by

a different thread, showing that our techniques extend quite easily, which witnesses the “robustness”

of our framework. On the practical side, we have introduced an approximated synthesis procedure

based on data-flow analysis that we implemented and evaluated on a benchmark of non-trivial C#

programs extracted from open-source repositories.
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The asynchronous programs rely exclusively on async/await and are deadlock-free by definition.

Deadlocks can occur in a mix of async/await with “explicit” multi-threading that includes blocking

wait primitives. Our paper deals with these two paradigms separately, but extending our approach

for such programs is an interesting direction for future work.
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